TAMIL NADU AGRICULTURAL UNIVERSITY

PROCEEDINGS

34th Forestry and 15th Sericulture Scientists Meet (07.05.2024)

LEAD CENTRE

Forest College and Research Institute Tamil Nadu Agricultural University

Mettupalayam - 641 301

Directorate of Research

Tamil Nadu Agricultural University Coimbatore – 641 003

2024

PROCEEDINGS

34th Forestry and 15th Sericulture Scientists' Meet

The 34th Forestry and 15th Sericulture Scientists' Meet was held on 07.05.2024 at MAFBIF hall, Forest College and Research Institute, Mettupalayam.

The Meet was chaired by **Dr. V. Geethalakshmi**, Vice-Chancellor, TNAU, Coimbatore. Madam emphasized the importance of high-density planting in neem and suggested to standardize the technologies. It was insisted to identify suitable teak clones for planting in the coconut plantations damaged by wilt. Viable agro forestry models developed may be popularized through KVKs.

Dr. M. Raveendran, Director of Research, TNAU, Coimbatore delivered welcome address. It was suggested to identify suitable trees preferably TNAU released varieties for planting under trees outside (ToF) forest and popularized. Data on area of ToF in Tamil Nadu may be collected and documented. Trees identified for containing pollution may be popularized in urban areas through KVKs

Dr. A. Balasubramanian, Dean (Forestry) presented the research highlights (2023-24). All Heads of the Department presented the action taken on the recommendations of 33rd Forestry and 14th Sericulture Scientists' Meet and action plan for the year 2024-25. Dr. S. Hemalatha, Research Coordinator proposed formal vote of thanks.

The proceedings of the 34th Forestry and 15th Sericulture Scientists' Meet are furnished under the following headings.

- I. Tree Improvement
- II. Management and Conservation
- **III. Value Addition and Business Development**
- **IV.** Sericulture
- V. Remarks
- VI. List of Participants

I.TREE IMPROVEMENT

A. ON FARM TRIAL

1. Improvement, Utilization and Value addition of Timber genetic Resources (Scientists-in-charge: Dr. K.T. Parthiban)

Teak - MTP TK 07, MTP TK 16, MTP TK 21 and Mahogany SM 18 will be taken up for OFT in five agroclimatic zones

S. No.	Zones	Location
1.	Southern Zone	15 Trials will be conducted in Farmers field
2.	Northern Zone	
3.	Western Zone	
4.	North Eastern Zone	
5.	Cauvery Delta Zone	

2. Development of High Yielding Short Rotation Clones/ Progenies for Multifunctional Industrial utility

(Scientist-in-charge: Dr. K.T. Parthiban)

Acacia Hybrid – AM 09, Khaya HYSR 1, Toona TC 01, Melia HYSR 1, Melia HYSR 5 and Chukrasia tabularis CT 03 will be taken up for OFT in five agroclimatic zones.

S. No.	Zones	Location
1.	Southern Zone	16 Trials will be conducted in Farmers field with
2.	Northern Zone	block / border plantation for plywood industry
3.	Western Zone	
4.	North Eastern Zone	
5.	Cauvery Delta Zone	

3. Annatto (*Bixa orellana*) -TNBi 20 (Scientists-in-charge: Dr. K. Kumaran, Dr. P.S. Devanand, Dr. S. Vennila, Dr. P. Radha)

Parent Code	Seed Yield (t/acre)	Bixin Content (%)	Nor Bixin content (%)
TNBi 20	0.90	3.214	2.005
•	 Promising genotype with white flower and green pods 		

Two OFTs were completed and the OFT will be continued for one more year (Western Zone).

Locations

Tirupur	Moolanur, Dharapuram	
Karur	Chinna Dharapuram, Vellaiyanai	
Coimbatore	Sirumugai	

MULTI LOCATION TRIAL

1. Mass multiplication and multilocation testing of identified genotypes

(Scientist-in-charge: Dr. K.T. Parthiban)

S. No.	Species	Improved Clones	No. of Locations
1.	Casuarina	CJ 02	2
		CJ 04	1
		CJ 05	1
		CJ 06	1
		CE 01	1
		CE 08	1
		CE 18	1
		E 2	4
		E 5	2
		E 9B	1
		A01	5
		A 06	4
		AF 01	1
		E 13	1
		DF 97	3
		EH 05	2
		LBT	2
		ET 01	1
2	Eucalyptus	ET 02	2
Ζ.		EG 14	3
		EG01	1
		EG 16	1
		EH 02	2
		EG 01	1
3.	Toona ciliata	TC 02	3
4.	Terminalia bellirica	FCRI TB 13	2

MLT will be conducted in three agroclimatic zones

	Zones	Location
1.	Western Zone	Trials will be
2.	North Eastern Zone	conducted in Farmers
3.	Cauvery Delta Zone	field

2. Field evaluation of Sodicity Tolerant Clones of *Casuarina junghuhniana* (MLT) (Scientist-in-charge: Dr M. Murugesh)

I. Clones

- T1 MTP 2 (Check variety or Control)
- T2 STC CJ3 (Sodicity Tolerant Clones of *Casuarina junghuhniana*)
- T3 STC CJ9 (Sodicity Tolerant Clones of *Casuarina junghuhniana*)

- T4 STC CJ15 (Sodicity Tolerant Clones of *Casuarina junghuhniana*)
- T5 STC CJ16 (Sodicity Tolerant Clones of *Casuarina junghuhniana*)
- T6 STC CJ17 (Sodicity Tolerant Clones of *Casuarina junghuhniana*)
- T7 STC CJ18 (Sodicity Tolerant Clones of *Casuarina junghuhniana*)

II. MLT locations

S. No.	District	Location
1.	Madurai	Chellampatty
2.	Trichy	ADAC & RI Campus
3.	Thanjavur	Palluthur, Pattukottai,

S. No.	Parameters	Madurai	Thanjavur	Trichy
1.	Soil pH	9.50	8.70	9.00
2.	Soil EC (d Sm ⁻¹)	0.62	0.79	1.32
3.	Soil CEC (C mol (P ⁺) kg ⁻¹)	49.63	25.20	32.45
4.	Sodium Absorption Ratio (SAR) (Meq kg ⁻¹)	19.47	13.10	14.88
5.	Exchangeable Sodium Percentage (ESP) (%)	18.68	19.20	18.52

3. Field evaluation of yield and high floss content in *Ceiba pentandra* CPT 29 clones

(Scientist-in-charge: Dr M. Murugesh)

Treatments

- 1. MTP01 (Control)
- 2. CP28
- 3 CP29
- 4. CP 30

MLT –Locations

- HC&RI Periyakulam:Red Laterite soilFC&RI Mettupalayam:Red SoilSamanayakkanpalayam:Block Cotton Soil 1.
- 2.
- 3.

Observations

Height, collar diameter and floss content

B. FOR INFORMATION

1. Enhancing Seed Yield in Neem (Azadirachta indica A. Juss.) for high aza content through breeding and precision Silvicultural approaches

Fifty neem plus trees were collected from Coimbatore and Tirupur districts and assessed for their aza content. Among the fifty plus trees TN-MTP-140 recorded high aza content (1.263%).

S. No.	Parent tree code	Tree height (m)	DBH (cm)	Canopy height (m)	Canopy width (m)	Aza %
1.	TN-MTP- 121	12.5	75.0	7.0	11.0	0.842
2.	TN-MTP- 122	7.0	71.5	5.0	7.5	0.807
3.	TN-MTP- 123	11.5	87.0	5.0	4.0	0.807
4.	TN-MTP- 124	9.0	71.0	4.7	7.0	0.905
5.	TN-MTP- 125	12.0	113.0	11.5	13.0	0.909
6.	TN-MTP- 126	7.0	72.5	5.5	8.3	0.847
7.	TN-MTP- 127	13.0	113.0	7.0	13.0	0.935
8.	TN-MTP- 128	12.0	93.5	11.0	12.0	0.985
9.	TN-MTP- 129	6.0	71.0	4.7	7.0	0.955
10.	TN-MTP- 130	16.0	105.0	11.0	14.3	0.828
11.	TN-MTP- 131	11.0	92.7	8.5	7.5	1.030
12.	TN-MTP- 132	10.5	122.5	6.5	5.0	1.060
13.	TN-MTP- 133	11.5	105.5	7.0	11.0	0.845
14.	TN-MTP- 134	7.0	83.0	6.0	6.5	1.020
15.	TN-MTP- 135	8.5	91.5	6.5	10.5	0.939
16.	TN-MTP- 136	5.5	69.5	3.0	7.5	0.826
17.	TN-MTP- 137	14.5	136.5	11.5	18.5	0.935
18.	TN-MTP- 138	9.0	72.0	4.3	5.2	0.835
19.	TN-MTP- 139	10.0	77.5	6.7	8.5	0.895
20.	TN-MTP- 140	7.5	63.0	5.0	7.0	1.263
Mean		10.05	89.31	6.87	9.22	0.906
SED		0.23	2.17	1.08	1.68	
CD (5%)		0.46	4.34	2.16	3.36	

C. FOR ADOPTION

I. Variety Release

1. *Melia* MD HYSR 05- Salient features

Clone	Melia MD HYSR 05	
Productivity	303.90 kg / tree	
Utility	Paper, ply and energy	
Rotation	5-6 years	
Straight cylindrical bole		
Wood quality		
Density	555.14 kg/m ³	

Veneer Recovery	80-85%
Holocellulose	75.50%
Calorific value	o 3946.34 Kcal

2. Acacia hybrid AHHYSR 09- Salient features

Clone	Acacia hybrid AH HYSR 09		
Productivity	217.275 kg / tree		
Utility	Paper, ply and energy		
Rotation	5 – 6 years		
Straight cylindrical bole			
Wood quality			
Density	555.84 kg/m ³		
Veneer Recovery	6X 27, OT – 76%		
Holocellulose	64.83 %		
Calorific value	4034.42 Kcal		

3. Eucalyptus EG09 - Salient Features

Clone & Parentage	EG09 (urophylla x grandis)
Productivity	150 mt/ha
Utility	Core veneer, Plywood, Energy, paper
Rotation	4 years (Plywood)
Straight cylindrical bole	
Wood quality	
Density	700-750 kg/m³
Veneer Recovery	8X27, O.T %- 67

4. Tamarind FCRI TAM 06- Salient Features

Genotype	FCRI-TAM-06
Age	Seven years clonal plantation
Spacing	3m x 3m (High density planting- 444 trees per acre)
Yield	8 kg per tree at 5 th year 10.05 kg per tree at 6 th year 10.66 kg per tree at 7 th year

Seed gum yield	60 per cent
Check variety	PKM 1
Pruning height	2m from ground level
Irrigation	Drip
Florigen treatment	Paclobutrazol 500 ppm before flowering

II. <u>Technology Release</u>

1. Cleft Grafting in Ceiba pendandra

Cleft grafting in *Ceiba pentandra* is useful for developing early yield and drought tolerant planting material. FC&RI has developed cleft grafting technique for early bearing variety using apical shoot. The rootstock used is the seedlings developed from bulk collections of *Ceiba pentandra*

The Cleft grafting using apical shoots as a scion could be used and recommended.

- Rootstock height: 10cm; Scion apical shoot height: 10-15 cm
- Grafting success: 95 100%
- Age of grafts for field planting :3-4 months
- Scion height growth increment: 15 cm in 3 months
- Graft union is good and Low-Cost technology
- Field survival is 85-95 %

Advantages

- Drought tolerant
- Early bearing
- Suitable for wind prone Areas

Grafts

Field Established Graft

Grafts

Pods Bearing Grafted Tree

D. REMARKS ON THE ONGOING UNIVERSITY RESEARCH PROJECTS /CORE PROJECTS/AICRP / EXTERNALLY FUNDED PROJECTS

S.	Project No. and Title	Name and	Duration	Remarks
No.		designation of the		
		Project Leader		
UNI	ERSITY RESEARCH PROJECT		I	I
1.	FC&RI/MTP/FOR/FOR &	Dr. R. Revathi	01.03.2024	Project may be
	SER/2024/072-Genetic	Prof & Head	to	continued
	Genetic Evaluation of Khaya	Dept. of Forest Biology &	01.03.2027	
	anthotheca genetic resources	Tree Improvement		
	for industrial utility in Tamil			
2			01 11 2022	Ductorstances has
Ζ.	SEC/MTP/FB&TI/FOR/2022/0	Dr. R. Vijayan	01.11.2022	Project may be
	UI According to a correlation	ASSOC. Prof (SST)		continued
	Assessment of correlation		51.12.2024	
	shelf life of noom coods as			
	influenced by storage factors			
3	FC&PI/PKM/FOP22020/001	Dr. M. Murugesh	01 05 2010	Pecommended
J.	Progeny evaluation in Kanok	Prof & Head	to	for Closure
	(<i>Ceiba pentandra</i> (I) Gaertn)	Dept of Agroforestry	01 03 2024	
EXTE	RNALLY FUNDED / ICAR PRO	DIECTS	0110012021	
1.	CIL/FCRI/MTP/FBTI/2022/R0		01.03.2022	Project may
	05	Dr.K.Kumaran	to	be continued
	Enhancing Seed Yield in Neem	Professor (Forestry)	01.03.2025	
	(<i>Azadirachta indica</i> A.J uss.)			
	through breeding and	ASSOC. PIOL (PDG)		
	precision Silvicultural	Accor Prof (CPP)		
	approaches	ASSOC. FTOI. (CRF)		
2.	ICFRE/FCRI/MTP/DOS/2020/	Dr. A. Balasubramanian	01.03.2020	Project may be
	R002	Dr. S. Radhakrishnan	to	continued
	Tamarind domestication,	Dr. M. Sivaprakash	31.12.2025	
	conservation and deployment	Dr. M. Suganthy		
	of genetic resources for			
	sustenance and livelinood			
2		Dr. K.T. Barthiban	01 04 2022	Draiact may be
5.	01Improvement Utilization	Dr. S. Umech Kanna	01.04.2022	continued
	and Value addition of Timber	Professor (Forestry)	31 03 2026	Continueu
	and value addition of minder	Dr. C. Cinthia Fernandaz	51.05.2020	
	genetic Nesources			
		(Aarl Extn)		
		Dr S Manivasagan		
		Asst. Professor (FOR)		

4.	GOI- DBT/FCRI/MTP/2022/R002 Biotechnological applications for development of HYSR clones amenable for Multifunctional Industrial utility	Dr. K.T. Parthiban Professor (Forestry) Dr. P. Kumar Asst. Prof. (Forestry) Dr. M. Raveendran Director of Research Dr. P.S. Devanand Assoc. Prof. (PBG)	01.04.2022 to 30.03.2025	Project may be continued
5.	TNPL/FCRI/MTP/AGF/2020/R 003 Improvement, Wood Quality Characterization and Utilization of pulpwood genetic resources amenable for Agroforestry	Dr. K.T. Parthiban Prof. (Forestry) Dr. C. Cinthia Fernandaz Assoc. Prof. (Agrl. Extn.) Dr. S. Umesh Kanna Prof. (Forestry), Dr. R. Jude Sudhagar Prof. (Forestry) Dr. M. Prasanthrajan Prof. (ENS) Dr. P. Boominathan Prof. (CRP)	01.01.2021 to 31.12.2025	Project may be continued
6.	CPL/FCRI/MTP/AGF/2022/R00 4 A Value chain on Plywood Agroforestry in Tamil Nadu	Dr. K.T. Parthiban Professor (Forestry) Dr. R. Jude Sudhagar Professor (Forestry) Dr. R. Ravi Assistant Professor (Forestry)	01.04.2022 to 31.03.2027	Project may be continued
7.	DBT/DPB/CPMB/CBE/2023/R0 03 Harnessing the genomic potential of Annatto (<i>Bixa</i> <i>orellano</i>) as a source of natural colorant	Dr. M. Raveendran Director of Research Dr. K. Kumaran (Forestry) Dr. S. Vennila (Forestry) Dr. V.P. Santhanakrishnan (Organic Chemistry) Dr. P.S. Devanand (Forestry Breeding) Dr P. Sudha (Food Processing) Dr N. Manikanda Boopathi (Biotechnology) Dr P. Radha (Biochemistry)	03.02.2023 to 02.02.2026	Project may be continued
8.	TNSLURB/HCRI/PKM/DFL/202 2/R002 Multiplication and popularization of High-Density Short Rotation (HDSR) saline/sodicity tolerant <i>Casuarina junghuhniana</i> clones through On Farm	Dr. M. Murugesh Prof. (Forestry) Dr. K.M. Chellamuthu	2021-2025	Project may be continued

	Trials/Multi-Location Trials in Tamil Nadu			
AICR	P SCHEMES			
1.	AICRP/FOR/MTP/FOR/002 AICRP on Potential Crops	Dr. K.R. Ramesh Professor (Forestry)	Continuous project Since 1982	Project may be continued

E. ACTION PLAN (2024-2025)

S. No.	Theme Activity	Name of the Scientist and centre	Works to be carried out	Deliverable/ Expected outcome
Them speci	e1: Genetic Im	provement and Va al wood species.	rietal Development in	prioritized NTFP
Them	e Leader: Dr. R.	Revathi, Dr. A. Bal	asubramanian & Dr. K.T.	. Parthiban
1.	Genetic improvement and popularization of NTFP and industrial wood species	Dr. K. Kumaran Dr. R. Revathi Dr. K.T. Parthiban Dr. P.S. Devanand Dr. R. Vijayan Dr. P. Radha Dr. K. Hemaprabha Dr. A. Balasubramanian Dr. M. Murugesh Dr. I. Sekar	 Collection, Assemblage and evaluation of dye yielding Species, TBO's Fruit yielding tree sp, Fibre and floss yielding tree sp., industrial wood species Field evaluation of Sodicity Tolerant Clones of <i>Casuarina</i> <i>junghuhniana</i> Field evaluation of high floss yielding <i>Ceiba pentandra</i> CPT 29 clones Field evaluation of Early Bearing <i>Ceiba</i> <i>pentandra</i> EB CPP 22,23 	Superior genotypes of the targeted NTFP tree species (Bixa, Neem, Tamarind, Soapnut, Silk cotton and industrial wood species (<i>Melia</i> , <i>Toona</i> , <i>Chukrasia</i> , <i>Casuarina</i> , <i>etc</i> .) will be developed
2.	Molecular characterization and varietal protection of tree species	Dr. K.T. Parthiban Dr. A. Balasubramanian Dr. K. Hemaprabha	 Genetic diversity analysis/ Phylogenetic relationship studies in the identified tree genetic resources DUS descriptors & developing PPV&FR regulation for <i>Toona</i> <i>ciliata, Chukrasia</i> <i>tabularis,</i> Neem, Karanja and <i>Khaya</i> <i>senegalensis</i> 	 To establish genetic identity of the assembled genotypes. Varietal protection for the assembled tree species

3.	Inventory and assemblage of industrial wood genetic resources	Dr. K.T. Parthiban Dr. R. Revathi Dr. K.R. Ramesh Dr. P. Rajendran Dr. P. S. Devanand Dr. K. Hemaprabha Dr. A. Balasubramanian Dr. M. Murugesh Dr. I. Sekar	 Germplasm assemblage and screening of Industrial wood species Development of HYSR clones for multi-utility through classical and molecular breeding Mass multiplication and Multi location testing of identified genotypes 	Superior genotypes for multipurpose industrial utility (pulp and paper, plywood, energy) will be developed
Them	ne 2: Conservati	on of Forest Gene	tic Resources	
Them	e Leader: Dr. R	. Revathi, Professo	or & Head Dept of FB &	TI
1.	Assemblage and conservation of tree species	Dr. K. Kumaran Dr. R. Revathi Dr. S. Vennila Dr. K.R. Ramesh Dr. R. Vijayan	Continuous assemblage of ecologically important tree species	Conservation and maintenance of Forest genetic resources for research and education activities
2.	Phenological changes and physiological characterization of tree species	Dr. R. Revathi Dr. K. Kumaran Dr. P. Rajendran Dr. K.B. Sujatha Dr. R. Vijayan	Continuous assessment of phenology and physiological characters of the tree species will be evaluated	Phenological and physiological characters will be documented

II. MANAGEMENT AND CONSERVATION

A. MULTI LOCATION TRIAL

1. Precision Silviculture technique in *Enterelobium cyclocarpum*

(Scientists In-charge: Dr. S. Radhakrishnan, Dr. M. Sivaprakash, Dr. B. Sivakumar, Dr. R. Jude Sudhagar and Dr. A. Balasubramanian)

Experimental Details

1.	Tree Species	:	Enterelobium cyclocarpum
2.	Spacing	:	2 m x 2 m
3.	No. of Seedlings per acre	:	1000 Nos
4.	Clone	:	MTP EC2
5.	Irrigation	:	Drip Irrigation
6.	Treatment	:	
	Fertigation	:	a) 150:100:100 kg N, P, K ha ⁻¹
		:	b) Humic acid (62.5 l ha ⁻¹)
8.	No.of replications	:	4
9.	No. Seedlings per replication	:	25
10	Design of the experiment	:	RBD

Observations to be recorded

- 1. Seedling height
- Seedling collar diameter 2.
- 3. Seedling volume

Locations

- 1. 2. Southern Zone
- Western zone : Farmer's field at Coimbatore
 - : Farmer's field at Sivagangai
- North Eastern Zone : Farmer's field at aduranthakam 3.

2. Testing of Casuarina clones for high biomass and bioenergy

(Scientists In-charge: Dr. A. Balasubramanian, Dr. P. Kumar, Dr. B. Sivakumar, Dr. P.S. Devanand, Dr. M. Sivaprakash and Dr. S. Radhakrishnan)

Experimental Details

1.	No. of clones	:	6 (CH1, CH2, CH5, CJ1, CJ9, MTP A1)
2.	Spacing	:	1 m x 1 m and 1.5 m x 1.5 m
3.	No. of Seedlings per acre	:	4000 and 1777 Nos.
4.	Design of the experiment	:	RBD
5.	Irrigation	:	Drip Irrigation
6.	Fertigation	:	150:100:100 kg N,P,K ha ⁻¹
7.	Treatment	:	6 (CH1, CH2, CH5, CJ1, CJ9, MTP A1)
8.	No. of replications	:	4
9.	No. Seedlings per replication	:	10

Observations to be recorded

- Seedling height 1.
- Seedling collar diameter 2.
- 3. No. of branches
- 4. Above ground biomass
- 5. Below ground biomass
- Total biomass 6.
- Calorific value of Wood from clones 7.
- Pelleting of tending waste and asses 8. the calorific value

Locations

- Western zone 1.
- : Farmer's field at Coimbatore
- 2.
- Southern Zone : Farmer's field at Sivagangai
- 3
- North Eastern Zone : Farmer's field at Maduranthakam

B. FOR INFORMATION

1. Carbon Sequestration in farm grown Teak

Age (years)	Zone	Above Ground Biomass (t ha ⁻¹)	Below Ground Biomass (t ha ⁻¹)	Total Biomass (t ha ⁻¹)	Total Carbon (t ha ⁻¹)	Total CO₂ (t ha⁻¹)
Block plantations						
15-20	HRZ	0.4716	0.1226	0.5942	0.2971	1.0903
	SZ	0.3953	0.1028	0.4981	0.2491	0.9141
	CDZ	0.4385	0.1140	0.5526	0.2763	1.0139
Boundar	y plantat	ions				
	HRZ	0.6841	0.1779	0.8620	0.4310	1.5817
15-20	SZ	0.5032	0.1308	0.6340	0.3170	1.1634
	CDZ	0.5918	0.1539	0.7457	0.3728	1.3683

In High rainfall zone of Tamil Nadu, twenty years old farm grown teak sequestered 1.58 tonnes of total CO_2 equivalent per hectare.

2. Carbon Sequestration Potential of trees in mine spoiled afforested areas:

S. No.	Tree Species	Age (year)	Avg tree height (m)	Avg DBH (m)	Avg tree vol (m3)	AGB (t ha-1)	BGB (t ha- 1)	TB (t ha-)	TC (t ha- 1)	Tt CO2 (t ha- 1)
1.	Tectona grandis	25	7.02	0.03	0.29	0.20	0.10	0.31	0.15	0.56

DBH-Diameter at Breast Height AGB- Above ground Biomass BGB-Below ground biomass TB-Total biomass TC-total carbon Tt CO₂ (t ha-1)- Total Co2 Equivalent

In mine spoil afforested areas of NLCIL, Neyveli, among the ten tree species evaluated for their carbon sequestration potential, 25 years old *Tectona grandis* sequestered 0.56 tonnes per hectare of carbon dioxide equivalent.

3. *Enterelobium cyclocarpum* - A Multipurpose tree:

S.	Creating	Height (m)		DBH (m)			Volume (m ³)	
No.	Spacing	12 MAP	24 MAP	36 MAP	12 MAP	24 MAP	36 MAP	36 MAP
1.	2.0 m x 2.0 m	4.80	5.35	7.14	0.050	0.092	0.267	0.763

The optimum spacing for pulpwood production is 2 m x 2 m, pollarding height is 4 feet and the interval for multiple fodder-cut is 60 days.

Treatments	No. of sprouts/stem*			
	15 DAP	30 DAP	45 DAP	60 DAP
T ₄ -Pollarding at the height of 4 feet	16.75ª	27.75ª	35.50ª	42.75ª

4. High carbon sequestration trees recommended for agroforestry practising farmers (Villupuram, Pudukottai, Cuddalore, Sivagangai, Tirunelveli, Virudunagar and Ramanadapuram districts) are listed below

Biomass and carbon storage of trees under the Agroforestry system

S. No.	Tree species	Age (yrs)	Total Carbon storage (kg/tree)	Carbon sequestration per year/tree (Mt)
1.	Azardirachta indica	30	226	7.53
2.	Ceiba pentandra	15	180	12.00
3.	Ailanthus excelsa	25	109	4.36
4.	Pterocarpus santalinus	20	80	4.00
5.	Melia dubia	6	79	13.16
6.	Gmelina arborea	12	35	2.91
7.	Tectona grandis	6	19	3.16
8.	Swietenia macrophylla	7	16	2.28

C. FOR ADOPTION

1. In Teak, the irrigation level of 100 % PE and fertigation dose of 187:125:125 (N: P: K) kg/ha/year is recommended for adoption for three years plantation.

1.	Age	Three years plantation
2.	Recommended Fertigation dose	187:125:125 (N: P: K) kg/ha/year
3.	Pan Evaporation	100 %

2. *Enterelobium cyclocarpum* - A new tree species for multipurpose utility has the following industrial uses

S. No.	Utility	Property
1.	Pulpwood utility	Holocellulose - 72.25 %
2.	Fodder value	Crude protein - 20.5 %
3.	Gum characteristics	Protein - 6.68 %, Fat - 1.6 %, Viscosity - 56 CP
4.	Packing case utility	Density - 0.4 g/cm ³

D. REMARKS ON THE ONGOING UNIVERSITY RESEARCH PROJECTS /CORE PROJECTS/AICRP / EXTERNALLY FUNDED PROJECTS

S.	Project No. and Title	Name and	Duration	Remarks
No.		designation of the		
		Project Leader		
UNIV	ERSITY RESEARCH PROJECT			.
1.	FOR/MTP/SIL/FOR/2022/ 001	Dr. M. Sivaprakash	01.04.2022	Project may be
	standardizing precision			continued
	Silvicultural techniques 10		31.03.2025	
	clopes for multiple utility			
2	FCRI/MTP/FOR/2021/003	Dr. B. Siyakumar	01 04 2021	Project may be
2.	Effect of spacing regimes on	Dr. M. Sivaprakash	to	continued
	growth and vield of		31.10.2024	continued
	Enterolobium cylocarpum			
3.	FCRI/YCD/FOR/2020/001	Dr. M. Kiruba		Project may be
	Introduction and evaluation of	Assistant	01.01.2021	continued
	alternate industrial wood	Professor	to	
	species for coffee based	(Forestry)	01.12.2025	
	agroforestry system			
EXTE	RNALLY FUNDED / ICAR PR	OJECTS	[
1.	NLC/TRRI/SRS/CDL/2023/R0	Dr. S. Radhakrishnan		_
	UI Studiina the suitebility and	Professor & Head,	01.07.2023	Recommended
	solution of tree species in	FC&RI, Mellupalayam	to	for closure
	mine spoils of NLCIL mines in	Dr. M.P. Suyumaran Drofessor (ENS)	31.03.2024	
	Nevveli	KVK Vridhachalam		
2.	BE/BIOTHERM/FCRI/MTP/202	Dr. P. Kumar		Project may be
	3/	Professor (Forestry)	01.11.2023	continued
	R001	Dr. K.T. Parthiban	to	
	Design and development of	Professor (Forestry)	31.10.2026	
	value chain based dendro-			
	energy generation			
3.	IINRG/FCRI/MTP/DOS/2014/	Dr. A.		Project may be
	R002	Balasubramanian	01.00.001.6	continued
	Network project on	Dean (Forestry)	01.08.2014	
	Harvesting, processing and	FC&RI, Mettupalayam		
	resing and gums" - Tamarind		51.05.2025	
	seed cum (C3100)			
4.	ICERE/ECRI/MTP/DOS/2020	Dr. A. Balasubramanian		Project may be
	/R001	Dean (Forestrv)		continued
	Silvicultural interventions for	FC&RI, Mettupalavam	01.03.2020	
	productivity enhancement	,,,,,,,,,,-	to	
	and carbon sequestration in		31.12.2025	
	plantations of important tree			
	species.			

5.		Dr. A. Balasubramanian		Project may be
	HOSUR/FCRI/MTP/2023/RU	Dean (Forestry)		continued
	Evaluation of growth and		01.09.2023	
	biometric attributes in few		to	
	farm grown trees of Hosur		31.08.2024	
	Forest Division (Krishnagiri			
	District)			
6.		Dr. A. Balasubramanian	01 07 0000	Project may be
	IBGPCCR/FCRI/MTP/2023/R	Dean (Forestry)	01.07.2023	continued
	Compandium on Haritaga	FCORI, Mellupalayan	31 06 2024	
	Trees of Tamil Nadu		51.00.2024	
7.	TNFD-	Dr. A. Balasubramanian		Project may be
	TBGPCCR/FCRI/MTP/2023/R	Dean (Forestry)	01.07.2023	continued
	003	FC&RI, Mettupalayam	to	
	Manual for Urban Tree		31.06.2024	
10	MMSA-	Dr A Balasubramanian		Project may be
10.	RKVY/FCRI/FCRI/MTP/FOR/	Dean (Forestry)		continued
	2023/R001	Dr. M. Murugesh,	01 00 2022	
	RKVY – Agroforestry	Professor & Head, (DAF)	01.09.2023	
	Component – Nursery	Dr. R. Revathi	31 03 2025	
	Establishment and QPM	Professor & Head	0110012020	
	(Tree Seedling Production)	Dr. S. Padhakrichnan		
		Professor & Head.		
		(DSNRM)		
11.	CIAF/FCRI/MTP/AGF/2016/R	Dr. K.T. Parthiban	01.04.2016	Project may be
	004	Professor (Forestry)	Continuous	continued
	Consortium of Industrial	Dr. I. Sekar	project	
12		Professor (Forestry)		Project may be
12.	3	Professor (Forestry)	01.04.2022	continued
	Trees Outside Forests in		to	continued
	India (TOFI)		31.03.2027	
13.	ICAR/CAFRI/FCRI/MTP/FOR	Dr. I. Sekar, Professor		Project may be
	/2024/R001	(Forestry)	01 02 2024	continued
	Developing Nursery Protocol	Dr. M. Murugesh	01.03.2024	
	Propagation Techniques for	Dr P S Devanand	31 05 2024	
	Deregulated Agroforestry	Associate Prof. (PBG)	51.05.2021	
	Tree Species in Tamil Nadu			
AICR	P / ICAR			
1.	AICRP/FOR/MTP/FOR/001	Dr. M. Murugesh		Project may be
	AICRP on Agroforestry	Professor and Head	Continuous	continued
	Management theme	(DAF)	project since	
		Dr. I. Sekar, Professor (Forestry)	1983	
1			1	1

E. ACTION PLAN (2024 - 2025)

S. No.	Theme Activity	Name of the Scientist	Works to be carried out	Deliverable/ Expected
		and centre		outcome
Them	e 1 Silviculture f	or Greening.		
1.	Precision silvicultural techniques for farm grown trees	Balasubramanian, D Dr. A. Balasubramanian Dr. S. Radhakrishnan Dr. C. Ushamalini Dr. M. Sivaprakash Dr. P. Kumar Dr. B. Sivakumar Centre: FC&RI, MTP Dr. R. Jude Sudhagar Centre: DARS, Chettinad	 ean Forestry Mandatory species <i>Tectona grandis</i> <i>Casuarina</i> clones <i>Enterolobium cyclocarp</i> <i>um</i> Density Trials Scheduling of irrigation and nutrient Assessment of yield Bio-metry Monitoring and management of diseases 	Precision silvicultu re techniques for the mandatory crops will be developed to meet the farme rs/ tree growers requirements
2.	Growth and Yiel d assessment of farm grown trees	Dr. S. Radhakrishnan Dr. M. Sivaprakash Dr. P. Kumar Dr. B. Sivakumar Dr. R. Jude Sudhagar DARS, Chettinad	 Mandatory species Casuarina clones Dalbergia sissoo, Sweitenia macrophylla Estimation of Growth biometry in farm grown trees 	Growth and yield of farm grown trees will be assessed
3.	Technology tran sfer and multi lo cational testing of precision technologies	Dr. A. Balasubramanian Dr. S. Radhakrishnan Dr. M. Sivaprakash Dr. P. Kumar Dr. B. Sivakumar	 Transfer of precision tree farming technique s Testing of technologies through MLTs in farmers' field Conducting trainings and demonstrations 	Precision silvicultural techniques developed will be transferred to farmers through training and demonstration.
Then	ne 2 Restoration	and Pollution Abater	nent	
Them	e Leader: Dr. S. F	Radhakrishnan Profe	ssor & Head Dept of S&NF	RM
1.	Eco-restoration	Dr. S. Radhakrishnan Dr. K. Suganya Dr. B. Sivakumar	 Choice of species for restoration Biodiversity studies Carbon sequestration studies 	Restoration of degraded lands through tree planting
2.	Studies on urban heat island effect in urban and peri urban areas	Dr. K. Suganya Dr. P. Kumar Dr. B. Sivakumar	 Urban heat island inten sity (UHII) will be asse ssed using surface daytime and ni ght time temperature b ased on LST data correlation analysis 	UHII effect will be assessed in urban and peri- urban areas will be computed

			between UHII and air p	
			ollutants will be	
-			assessed	1 - 1 -
Them	ie 3 : Designing, I	Developing and Pope	ularizing Agrotorestry Mod	leis
Inem	Nultifunctional	Dr. D. Judo	stry) Dept of AGF)	For domonstrating
1.	Agroforestry	Sudhagar,	establishment of	to farmers
	Model	DARS, Chellinad Dr. P. Vennilla	Mululuncuonal Agroforestry model for dry	
		AC&RI,	lands at DARS, Chettinad	
		Vazhavachanur	and AC&RI,	
			Vazhavachanur	
2.	Introduction and evaluation of	Dr. I. Sekar, Dr. M. Murugesh	Inter crop studies of High	The suitable
	high yielding	Dr. m. maragesh	Pulses/Millets /Cereals	recommended to
	pulses/millets		/Cotton etc which was	the Agroforestry
	/Cereals/Cotton		released by TNAU	farmers
	junghuhniana			
3.	Developing	Dr. I. Sekar,	Biometrical data	Suitable HDSR
	based		clones of Casuarina.	recommended for
	Agroforestry		Dalbergia and	dendroenergy
	Model		Eucalyptus	based
			 Study of thermo chemical properties of 	system.
			above clones	
4.	Soil biological	Dr. M. Thilak,	Soil Microbial	Results help for
	studies under	(Agri. Microbiology)	species	management and
	agroforestry		• Soil microbial carbon	improvement
	systems		assessment	under various
			Soli Microbial respiration	systems
Them	e 4 : Developing	Nursery Protocol fo	or QPM (Tree Seedlings) of	Important Farm
Them	grown Ir ie Leader: Dr. I. S	ees Sekar Professor (Fore	estry) Dept of AGF)	
1.	Studies on Fixing	Dr. I. Sekar,	Fixing standards for	QPM protocol will
	certification	Dr. M. Murugesh	potting media	be developed for
	standards for	Dr. A. Shanthi	• Fixing the Poly bags	important Farm
	and OPM		 Fixing the minimum 	species
			standards of tree	
			seedlings parameters	
			for QPM production	
			• QPM -Tree seedlinas	
			health standards (Pest,	
			Disease & Nematode	
			assessment and management)	
			manayement	

III. VALUE ADDITION AND BUSINESS DEVELOPMENT

B. FOR INFORMATION

1. Activated Carbon from Lantana camera An Invasive Alien Species

Activated carbon was prepared through a one-step activation process using orthophosphoric acid in a 1:1 ratio at various temperatures, specifically 500°C, 550°C, 600°C, 650°C, and 700°C, to determine the optimal conditions. The iodine number, which measures the microporosity of the activated carbon, was found to be highest for activated carbon derived from *Lantana camara* produced at 700°C. It was concluded that *Lantana camara* has greater potential for the production of activated carbon compared to *Prosopis juliflora and Senna spectabilis*.

2. Identified Native Grasses for Grass Land Restoration Work

Surveyed and assessed native and invasive grass species suitable for grassland restoration across 22 Forest Divisions of Tamil Nadu. Approximately 73 grass species, noted for their high palatability and ease of propagation, among which 10 species as follows were identified and recommended for restoration initiatives in various divisions of Tamil Nadu Forest Department.

S. No.	Common Name	Botanical Name
1.	Buffel grass	Cenchrus ciliaris
2.	Bermuda grass	Cynodon dactylon
3.	Golden false beard grass	Chrysopogon aciculatus
4.	Angleton grass	Dichanthium aristatum
5.	Tufted grass	Enteropogon monostachyos
6.	Black spear grass	Heteropogon contortus
7.	Natal grass	Melinis repens
8.	Basket grass	Oplismenus burmannii
9.	Indian comet grass	Perotis indica
10.	Kangaroo Grass	Themeda triandra

3. Documentation of Birds Diversity in NLCIL Areas

A total of 107 avian species have been documented in NLCIL restoration sites. In terrestrial areas, 77 avian species belonging to 11 orders and 33 families were observed in Neyveli. The restored sites are showing positive trends of growing biodiversity, as evidenced by the increasing bird population and density. Additionally, a coffee table book on Avian Diversity in NLCIL was published to provide further information.

4. Biodiversity indices of Dindigul Forest Division

In the Dindigul Forest Division, *Albizzia amara* was the most dominant species in four ranges. The highest tree density for *Albizzia amara* was observed in Sirumalai (4.50/ha), Ayyalur (2.83/ha), Natham (6.80/ha), Azhagarkovil (7.00/ha), and Kannivadi (1.40/ha). In Vattalakundu, *Anogessius latifolia* had a tree density of 2.00/ha, while *Commiphora caudata* had a density of 6.25/ha. Oddanchatram exhibited the highest species richness and maximum density. Among the ranges,

Oddanchatram exhibited the maximum total density and species richness. The highest Shannon-Weiner index and species evenness were recorded in Kannivadi.

5. Status of Non-Timber Forest Products (NTFPs) in the Dindigul Forest Division

The primary Non-Timber Forest Products (NTFPs) in the Dindigul Forest Division include *Phoenix sylvestris, honey, Terminalia chebula, Acacia concinna,* and *Emblica officinalis.* It was also found that that majority (67%) of the surveyed population were earning daily wages in addition to their income through collection of NTFPs (Non-Timber Forest Products). 32% of the participants were involved in a combination of activities such as NTFPs collection, agriculture, and daily wage labour etc.

C. FOR ADOPTION

I. <u>Technology Release</u>

1. Melocanna baccifera based Fodder Pellets

Bamboo leaf-based fodder pellets were developed and assessed their nutritive and anti-nutrient properties for fodder suitability.

TECHNOLOGY

-					
S. No.	Item	Percent			
1.	M. baccifera leaf powder	70			
2.	Groundnut oil cake	15			
3.	Rice bran	4			
4.	Maize grain	4			
5.	Ragi grains	4			
6.	Molasses	1			
7.	Mineral mixture	1			
8.	Salt	1			

Composition of Bamboo Pellet

Nutritive value of Bamboo Pellet

S. No.	Item	Per cent
1.	Crude Protein	19.86
2.	crude fat	3.34
3.	crude fibre	21.9
4.	carbohydrates	40.1

2. Elephant dung based Agarbatti

The Elephant dung based Agarbatti was developed and validated based on the burning properties like burning time, flammability, ash content, binding properties (binding quality and moisture absorption in storage) and fragrant properties (best ratio and sensory score). Based on the results, the developed Agarbatti from Elephant dung have better flammability, burning time and binding quality for commercial utility.

TECHNOLOGY

S. No.	Item	Per cent
1.	Elephant dung	80
2.	Saw Dust cum Jigat powder	20

Composition of Elephant dung based Agarbatti

Quality Parameters of Elephant dung based Agarbatti

S. No.	Parameter	Value
1.	Weight	10.00 g
2.	Flamability	7 seconds
3.	Burning Time	61 minutes
4.	Ash Content	0.68 g
5.	Burning Quality	Continuous

II. <u>Products Developed - Patent</u> Plant Based Wild Boar Repellent

A plant-based wild boar repellent, consisting of a 100% plant extract combination with a dosage ratio of 1:9, has shown potential in preventing wild boar entry and damage.

S.	Treatment	Level of intrusion (m)			
No.		5 DAS	10 DAS	15 DAS	20 DAS
1.	100 % Plant	-	-	-	-
	Combination				

Control: Untreated field

D. REMARKS ON THE ONGOING UNIVERSITY RESEARCH PROJECTS /CORE PROJECTS/AICRP / EXTERNALLY FUNDED PROJECTS

S. No.	Project No. and Title	Name and designation of the	Duration	Remarks
		Project Leader		
	UNIVERSITY RESEARCH PRO	JECT		
1.	FC&RI/MTP/FPW/FOR/2023/001	Dr. I. Sekar	01.04.2023	Project may be
	Developing and validation of	Prof. (Forestry)	to	continued
	Elephant dung based Agarbatti		01.03.2024	
2.	HC&RI/MTP/HORT/HORT.CROPS/	Dr. P. Hemalataha	01.04.2024	Project may be
	2024/041	Assoc. Prof. (Horti.)	to	continued
	Evaluating the suitability of		01.03.2025	
	medicinal plants for Melia dubia			
	and <i>Toona ciliata</i> based			
	Agroforestry system			
	EXTERNALLY FUNDED / ICAR	PROJECTS		

1.	TNFD-WP / FCRI / MTP / FPW / 2023 / R002 Assessing the Natural Resources of a Forest Ecosystem, A Comprehensive Study of soil, Vegetation, and Non – Timber Forest Products in Dindigul Forest Division	Dr. K. Baranidharan Prof. (Forestry) Dr. R. Ravi Asst. Prof. (Forestry)	01.04.2023 to 01.03.2024	Recommended for Closure
2.	TNFD/WPG/ FCRI / MTP / FPW / 2024 / R001 Assessing the Natural Resources of a Forest Ecosystem: A Comprehensive Study of Carbon Estimation, Soil and Non-Timber Forest Products in Gudalur Forest Division	Dr. K. Baranidharan Prof. (Forestry) Dr. R. Ravi Asst. Prof. (Forestry)	01.04.2024 to 01.03.2025	Project may be continued
3.	TNFD-TBGPCCR/FCRI /MTP/2023 /R004 Strengthening field level staff capacity in documentation, screening and standardization of mass multiplication technology for native fodder grasses	Dr. K. Baranidharan Prof. (Forestry)	01.04.2022 to 01.06.2024	Recommended for closure
4.	TNFD- TBGPCCR/FCRI/MTP/2023/R007 Hands on Training program on Enhancing Field-Level Staff Competence in Grassland Ecology and Restoration Techniques	Dr. K. Baranidharan Prof. (Forestry)	01.12.2023 to 01.11.2024	Recommended for closure
5.	TNFD- TBGPCCR/FCRI/MTP/2024/R001 Restoration of Grassland in the Sirumugai Range of Coimbatore Forest Division.	Dr. K. Baranidharan Prof. (Forestry)	01.01.2024 to 01.12.2024	Project may be continued
6.	FCRI / MTP / TFDP 2022 / R001 Studies on suitability of Bamboos for biochar, activated carbon, fodder pellets and briquettes.	Dr. M.P. Divya Prof. (Forestry) Dr. R. Ravi Asst. Prof. (Forestry)	01.04.2022 to 01.03.2024	Recommended for closure
7.	TNFD/FCRI/MTP/FPW/2022/R001 Isolation of Plant Alkaloids and Development of Plant Based Wild Animal Repellent to Mitigate Human Wild Boar Conflicts in Tamil Nadu	Dr. K. Baranidharan Prof. (Forestry)	01.04.2022 to 01.03.2024	Recommended for closure
8.	FCRI / MTP / NLC / 2022 / R001 Documentation and Seasonal Variations of Avifaunal Diversity in different Ecosystems of Neyveli Lignite Corporation India Limited	Dr. K. Baranidharan Prof. (Forestry)	01.03.2022 to 01.09.2023	Recommended for closure

E. ACTION PLAN (2024-2025)

S. No.	Theme Activity	Name of the Scientist	Works to be carried out	Deliverable/ Expected
		and centre		outcome
Them	e 1: Value Addition	in Wood and Non-Tir	nber Forest Produ	icts
Them	e Leader: Dr. R. Rav	i		
1.	Development of organic cosmetic product from the seeds of <i>Sapindus</i> <i>emarginatus</i>	Dr. R. Ravi Dr. R. Revathi Dr. M. Tilak Dr. R. Radha FC&RI, MTP	Extraction of properties responsible for cosmetic products from the Seeds	Development of Organic Soap
2.	Development of value-added product in Wild Cucurbit – <i>Citrullus</i> <i>colocynthis</i>	Dr. P. Hemalatha Dr. R. Ravi Dr. R. Radha FC&RI, MTP	Isolation and characterization of bio chemical constituent from the fruits	Development of natural Hair Rejuvenation oil
3.	Value added product from the latex of <i>Pterocarpus</i> <i>marsupium</i>	Dr. R. Ravi Dr. K. Baranidharan Dr. P. Hemalatha Dr. S. Manivasakan FC&RI, MTP	Identification and quantification of biochemical constituent from the Latex	Development of Value-added product
4.	Suitability of <i>Chukrasia tabularis</i> Clones for Ply wood, pulp and paper production	Dr. I. Sekar Dr. M.P. Divya Dr. R. Ravi FC&RI, MTP	Core veneer, pulp and paper properties of <i>Chukrasia</i> <i>tabularis</i> Clones	Suitability of <i>Chukrasia</i> <i>tabularis</i> clones for Core veneer, pulp and paper production
Them	e 2: Wildlife Manage	ement		
Them	e Leader: Dr. K. Bara	anidharan		
1.	Mitigation Measures for Man Animal Conflicts	Dr. K. Baranidharan Dr. R. Ravi Dr. P. Priyadharshini	Extration of alkoloids from indetified Mulberrry for the development of repellent.	Plant based animal repellent will be developed and promoted
2.	Biodiversity Assessment in different landscapes	Dr. K. Baranidharan Dr. R. Ravi Dr. P. Kumar	Biodiversity Assessment of Gudalur Forest Division NTFP Survey Biodiversity Indices	Documentation of base line biodiversity data will be used for writing Forest working plan and effective management
3.	Development of GIS maps for Protected areas	Dr. K. Baranidharan Dr. P. Ragunath Dr. R. Ravi	Developing LCLU maps for Gudalur Forest Division and	Maps will be used as tool to reduce Human Animal Conflicts in Gudalur.

				Ossudu Bird	Habitat
				Sanctuary	programs in Ossudu Bird sanctuary
4.	Development Grass la Restoration Techniques	of and	Dr. K. Baranidharan Dr. R. Ravi Dr. M. Tilak	Development of field trials with different native grass species and its restoration techniques	Catalogue on grass land restoration techniques will be developed for effective management of grassland

IV. SERICULTURE

A. ON FARM TRIAL

1. Effect of foliar spraying of effective microbes (EM) on yield and quality of mulberry

(Scientist In-charge: Dr. K.A. Murugesh, Professor (Sericulture))

Locations

- 1. Thoppampatti
- 2. Chikkarasampalayam
- 3. Puthuvadavalli

Treatments

- T₁: RDF + Foliar spray of EM @ 1% thrice
- T₂: RDF + Poshan @ 7 ml/l (Treated Check)
- T₃: Farmers practice

Time of application: 15, 30 & 45 days after pruning

Observations to be recorded

- In mulberry: Shoot length, No. of shoots/plant, No. of leaves/shoot, Crude protein, moisture content, moisture retention capacity, weight of 100 leaves and shoot yield.
- In silkworm: Matured larval weight, ERR, cocoon weight, shell weight, shell ratio, cocoon yield and filament length.

B. FOR INFORMATION

I. Mulberry Crop Protection

1. Alternate insecticide molecule & botanical for the Management of key pests in Mulberry

- a. Bio efficacy of Insecticides against mulberry leaf webber and thrips
 - Spraying of Flubendiamide 39.35 SC @ 0.25 ml/L was the most effective against leaf webber followed by Chlorantraniliprole 18.5 SC @ 0.30 ml/L
 - Fipronil 5SC @ 2ml/L was the most effective in controlling thrips followed by Spinetoram 11.7 SC @ 0.84 ml/L
 - Mean reduction in leaf webber and thrips incidences was:

Pests	Flubendiamide 39.35 SC	Chlorantraniliprole 18.5 SC
Leaf webber	88.11%	81.49%
	Fipronil 5SC	Spinetoram 11.7 SC
Thrips	87.83%	81.24%

b. Bio efficacy of Botanicals against mulberry leaf webber and thrips: Spraying of

- TNAU Bio G3 @ 5% was the most effective botanical against leaf webber followed by *Eupatorium adenophorum* extract @ 3%
- Mean reduction in the pests incidence

Pests	TNAU Bio G3@ 5%	Eupatorium adenophorum extract@ 3%
Leaf webber	70.19%	61.72%
Thrips	69.75%	63.23%

2. Screening of Mulberry accessions for resistance to insect pests, yield, suitability for silkworm rearing and cocoon production

Screening of 40 mulberry accessions for their tolerance to insect pests indicated, 14 mulberry accessions showed tolerance to leaf webber and 21 showed tolerance to thrips.

- Accessions tolerant to leaf webber and pink mealy bug: MI-0145, ME-0025 and MI-0252
- Accessions tolerant to leaf webber, thrips and pink mealy bug: ME-0174 and MI-0790
- Mulberry accessions, MI-0174, MI-0145 and MI-0790 showed higher tolerance to insect pests, better leaf quality parameters and enhanced cocoon yield.

3. Efficacy of *Lantana camara* against Wood Eating Termites

The termite population collected from TNAU insectary; Coimbatore was identified as *Coptotermes heimi* by morphological measurements. The methanolic extract of *Lantana camara* was tested against *Coptotermes heimi* through toxicity and fumigation tests.

- LC₅₀ value (95% confidence limits) for toxicity: 0.484%
- LC₅₀ value (95% confidence limits) for fumigation test: 0.0008 µg/ml

II. Value addition in Sericulture

1. Thermochemical characterization and energy recovery potential of mulberry genetic resources

- *Morus nigra, M. laevigata,* and *M. australis* were superior genotypes for bioenergy generation due to their higher fixed carbon.
- *M. nigra* emerged as the most promising option for efficient gasification, ensuring high energy output and effective energy conversion.
- *M. rotundiloba, M. macroura, M. cathayana, M. alba* and G2 have recorded superior thermochemical properties like calorific value, fuel value index *etc*.

2. Silkworm Pupae Based Feed for Aquaculture

Substitution of aqua diet with 20% de-oiled silkworm pupal meal to common carp fingerling showed higher

• Body weight gain (2.77±0.10) and survival rate (86.6%)

- Feed efficiency (1.13±0.01) and protein efficiency ratio (0.79±0.03)
- Replaces 20% fish meal
- Reduced the production cost (BC ratio: 2.05).

C. FOR ADOPTION

- **1.** Amino acids as exogenous modulator for enhancing yield and quality of silk
 - Composition of modulator: Glycine 10 ppm + Alanine 100 ppm + Serine 100 ppm
 - 1 sachet of amino acid mixture dissolved in 5 litres of water to feed 100 dfls of 5th instar larvae
 - Daily spraying once in the morning for six days
 - Increased the cocoon yield by 16%
 - Improved the raw silk quality traits *viz*., Filament length (7.37 %), Fibroin (11.44 %) and sericin (9.78 %)
 - BC ratio of 2.08 as against 1.85 in the farmer's practice.

2. NutriStick- organic growth promoter for Mulberry cuttings

- 1 pellet (4g) of "Nutristick" between four mulberry cuttings at the time of planting.
- Increased the root initiation, survival rate, rooting percentage, root length, shoot length and no. of leaves per plant
- Reduced the nursery period by 15 days
- Enhanced survival (90.33%) and benefit cost ratio (1.90)

3. High value-added food products from mulberry fruits

The high value-added food products from mulberry fruits *viz*., jam, squash, ready to serve (RTS) and dehydrated fruits were developed and tested.

- Shelf life of 6 months for all products except RTS (3 months) under ambient conditions.
- All the products got highly acceptable sensory scores.
- Cost varied from Rs.130 to 200/- except RTS (Rs.22/100 ml).
- Mulberry variety MR2 was found as good source for preparing value added products.

D. REMARKS ON THE ON- GOING UNIVERSITY RESEARCH SUB PROJECTS

S. No.	Project Number and Title	Name and designation of project leader (s)	Duration	Remarks
1.	CPBG/MTP/SERI/SERI/2021/ 001: Breeding for sustainable growth and leaf yield in mulberry	Dr. P. Mangammal Assistant Professor (Sericulture)	01.11.2021 to 01.10.2024	Project may be continued
2.	CPPS/MTP/SER/FOR/2021/00 2: Studies on sericomposting	Dr. R. Shanmugam	01.06.2021 to	Recommended for closure

	on soil properties, mulberry leaf quality and sericultural parameters of silkworm	Assistant Professor (Sericulture)	01.05.2023	
3.	CPPS/MTP/SER/FOR/001 Development and evaluation of high value fruit-based food products from different mulberry varieties	Dr. P. Priyadharshini, Assistant Professor (Sericulture) Dr. P. Geetha Professor (FSN), CPHT, AEC&RI, TNAU, Coimbatore	01.10.2021 to 01.09.2023	Recommended for closure
4.	CPPS/MTP/SER/FOR/002 Effect of organic foliar sprays on the qualitative and quantitative attributes of mulberry and silkworm	Dr. K.A. Murugesh Professor (Sericulture)	01.11.2021 to 01.10.2023	Recommended for OFT

E. Action Plan (2024-2025)

S. No.	Action Plan/ Activity	Name of the Scientist and centre	Work to be carried out	Deliverables /expected outcomes
Theme	e 1. Mulberry Crop In	nprovement		
Theme	e Leader: Dr. P. Priya	dharshini, Assistant	Professor (Sericu	lture)
1.	Screening of mulberry fruit yielding accessions for higher fruit yield and quality	Dr. P. Priyadharshini, Dr. V. Ulaganathan, Dr. A. Thangamalar,	Studying the reproductive descriptors of mulberry fruit yielding accessions and assessing the physico chemical characteristics of mulberry fruits	Mulberry accessions with potential for higher fruit yield and quality will be identified.
Them	e 2. Mulberry Crop M	lanagement		
Them	e Leader: Dr.T. Chito	leshwari, Professor	(SS&AC)	
1.	Standardising micronutrients (Zn & Fe) foliar spray for enhanced leaf yield and quality in mulberry	Dr. T. Chitdeshwari, Dr. K.A. Murugesh,	Standardize the micronutrients (Zn & Fe) spray for improving leaf yield & quality of mulberry	Optimum Zn and Fe spray for increased leaf yield and quality will be standardized.
2.	Crop Management strategies for enhancing mulberry fruit yield	Dr. P. Priyadharshini, Dr. T. Chitdeshwari, Dr. P. Boominathan,	Optimizing the pruning schedules for induction of flowering and standardizing the fertilizer schedule and growth promoters for	The best pruning schedule, dose of fertilizers and growth promoters will be arrived for enhanced fruit setting and yield.

			enhancing the		
Theme	3 Mulberry Crop Pr	otection	IT UIL SEL		
Theme Loader, Dr. K. Senguttuyan Assistant Professor (Entomology)					
1.	Investigation on Novel Insecticides with Minimum Residue Level for Mulberry Crop Protection	Dr. K. Senguttuvan, Dr. R. Aruna	Identifying Novel Modes of Action (MoA) insecticides for mulberry crop protection	Effective insecticide with novel mode of action will be identified for mulberry crop	
2.	Studies on seasonal occurrence of leaf blight in mulberry and its management strategies	Dr. C. Ushamalini Dr. R. Aruna	Studying the severity of leaf blight in mulberry at different seasons and to identify effective fungicide for its management.	Identifying effective fungicide for leaf blight management	
3.	Survey for insect pest incidence in major mulberry growing areas for pest forecasting	Dr. M. Senthilkumar	Assessing the diversity and intensity of mulberry pest and relate the effect of weather parameters on the incidence of insect pests	Forecasting the incidences of major pests in mulberry growing tracts	
4.	Effect of seriwaste composts on pest and disease incidence in Mulberry	Dr. K. Senguttuvan Dr. C. Ushamalini, Dr. R. Shanmugam,	Studyingtheimpactofseriwastecompostscompostsonanddiseaseincidenceinmulberry	The beneficial effect of seriwaste composts on pest and disease incidences in mulberry will be ascertained	
Theme 4. Silkworm Crop Production					
Theme	e Leader: Dr. K.A. Mu	rugesh, Professor (S	Sericulture)		
1.	Effect of different protein sources on growth of silkworm and cocoon yield	Dr. K.A. Murugesh, Dr. R. Shanmugam	Studying the effect of silkworm growth and cocoon parameters for better economic returns to the farmers.	Effective protein sources and dose of administration will be identified for better cocoon yield and raw silk quality	

V. REMARKS

- Efforts may be taken to bring more area under forest in accordance with the Governments initiative on bringing 33% of area under forest cover through Green Tamil Nadu Mission (**Action**: Dept. of AF).
- The wild boar repellent developed at FC&RI may be evaluated with the repellent developed at ARS, Virinjipuram (**Action**: Dept. of FPU &WL).
- Clonal technology for mass multiplication of Naga chillies under controlled cultivation may be standardised (**Action**: Dept. of FPU &WL).
- Promising Teak clones may be identified for planting in the coconut plantations damaged by wilt (**Action**: Dept. of FB&TI).
- High Density Planting in neem may be standardized (**Action**: Dept. of S&NRM)
- Biochemical characterization of Neem germplasm may be carried out. Efforts may be taken to introgress genes responsible for faster growing to Neem to enhance growth rate (**Action**: Dept. of FB&TI/DCPMB&B).
- Seed Technologists may be involved in DUS characterization of tree crops. (Action: Dept. of S&NRM/DSS&T).
- The naval seed and pulp powder developed by FC&RI may be evaluated with the products available in the market. Nutritive profile of naval seed and pulp powder may be analysed (**Action**: Dept. of FB&TI/DCSC&RI).
- An empirical model of carbon sequestration may be developed for farm grown trees (**Action**: Dept. of S&NRM).
- RS & GIS and other modern tools may be employed for quick assessment of biomass of trees (**Action**: Dept. of S&NRM).
- Research on growth rate of trees under polluted environment may be taken up (**Action**: Dept. of S&NRM/DNRM).
- Data on income generated by farmers through multifunctional agroforestry models may be collected and documented (**Action**: Dept. of AF).
- Suitable trees may be identified for trees outside forest and popularized. Data on area of ToF in Tamil Nadu may be collected and documented (**Action**: Dept. of AF).
- Trees identified for containing pollution may be popularized in urban areas through KVKs (**Action**: Dept. of S&NRM/DNRM/DEE).

- The ratio of tree fodder pellets and economic viability for utilization may be standardized in association with Vet. Asst. Surgeons (**Action**: FPU &WL/Dept. of BSS/DCM).
- Efforts may be taken to popularize viable agro-forestry models through KVKs (**Action**: Dept. of AF/Dept. of BSS/All KVKs/DEE).
- The nutritive profile of mulberry fruits may be analysed and newer products may be developed (**Action**: Dept. of Sericulture/DCSC&RI).
- Characterization of mulberry germplasm may be carried out involving Plant Breeder (**Action**: Dept. of Sericulture/ Dept. of FB&TI).
- TNAU Bio G3 may be validated at lesser dose for mulberry pest management (**Action**: Dept. of Sericulture).
- Zinc and iron solubilizing microbes may be explored for increasing sericulture productivity (**Action**: Dept. of Sericulture/DNRM).
- All the scientists are encouraged to propose externally funded projects and publish articles in Scopus indexed journals / > 7 NAAS rated Journals (**Action**: All Scientists).
- Melia and Kapok based intercrop studies may to be conducted with TNAU varieties (**Action**: Dept. of AF).

Designation and Department S. No. Name Dr. M. Raveendran Director of Research, TNAU, Coimbatore 1. Dean, (Forestry) 2. Dr. A. Balasubramanian Director, NRM, TNAU, Coimbatore 3. Dr. P. Balasubramaniam Director, CPPS, TNAU, Coimbatore Dr. M. Shanthi 4. 5. Dr. S. Pazhanivelan Director, CWGS, TNAU, Coimbatore Dr. E. Somasundaram Director, ABD, TNAU, Coimbatore 6. Director, DCM, TNAU, Coimbatore 7. Dr. M.K. Kalarani Director, Seed Centre, TNAU, Coimbatore 8. Dr. R. Umarani Dr. N. Senthil Director, CPMB&B, TNAU, Coimbatore 9. 10. Dr. D. Suresh Kumar Director, CARDS, TNAU, Coimbatore Dean (Agrl. Engg.), AEC&RI, TNAU, Coimbatore 11. Dr. A. Raviraj 12. Dr. S. Radhakrishnan Prof. & Head, Dept. of Silvi. & NRM, FC&RI, MTP Dr. R. Revathi Prof. & Head, Dept. of FBTI, FC&RI, Mettupalayam 13. 14. Dr. S. Manimegalai Prof. & Head, Dept. of Sericulture, FC&RI, Mettupalayam Prof. & Head, Dept. of BSS, FC&RI, Mettupalayam Dr. S. Varadha Raj 15. Dr. K. Baranidharan Prof. & Head, Dept. of FPW, FC&RI, Mettupalayam 16. Professor, O/o, Dean (Forestry), FC&RI, Dr. K.T. Parthiban 17. Mettupalayam 18. Dr. K.R. Ramesh Professor, Dept. of FBTI, FC&RI, Mettupalayam

VI. LIST OF PARTICIPANTS

S. No.	Name	Designation and Department		
19.	Dr. S. Hemalatha	Professor, Dept. of BSS, FC&RI, Mettupalayam		
20.	Dr. A. Shanthi	Professor, Dept. of Agro Forestry, FC&RI,		
		Mettupalayam		
21.	Dr. K.A. Murugesh	Professor, Dept. of Sericulture, FC&RI, Mettupalayam		
22.	Dr. T. Chitdeswari	Professor, Dept. of Sericulture, FC&RI, Mettupalayam		
23.	Dr. C. Ushamalini	Professor, Dept. of Sericulture, FC&RI, Mettupalayam		
24.	Dr. M.P. Divya	Professor (Forestry), Directorate of Research, TNAU, Coimbatore		
25.	Dr. C. Babu	Professor (PBG), Directorate of Research, TNAU, Coimbatore		
26.	Dr. S. Umesh Kanna	Professor, O/o. Vice Chancellor, TNAU, Coimbatore		
27.	Dr. K. Kumaran	Professor, Dept. of Agronomy, ADAC&RI, Trichy		
28.	Dr. R. Jude Sudhagar	Professor (Forestry), DARS, Chettinad		
29.	Dr. P. Rajendran	Professor (Forestry), KVK, Pongalur		
30.	Dr. K. Premalatha	Assoc. Professor, Dept. of Forage Crops, TNAU, CBE		
31.	Dr. P. Hemalatha	Assoc. Prof., Dept. of FP&W, FC&RI, Mettupalayam		
32.	Dr. S. Srivara Buddhi Bhuvaneswari	Assoc. Prof., Dept. of BSS, FC&RI, Mettupalayam		
33.	Dr. K.B. Sujatha	Assoc. Prof., Dept. of FBTI, FC&RI, Mettupalayam		
34.	Dr. K. Suganya	Assoc. Prof., Dept. of Silvi. & NRM, FC&RI, Mettupalayam		
35.	Dr. M. Tilak	Assoc. Prof., Dept. of Agroforestry, FC&RI, Mettupalayam		
36.	Dr. R. Vijayan	Assoc. Prof., Dept. of FB&TI, FC&RI, Mettupalayam		
37.	Dr. P.S. Devanand	Assoc. Prof., Dept. of FB&TI, FC&RI, Mettupalayam		
38.	Dr. K. Hemaprabha	Assoc. Prof., Dept. of FB&TI, FC&RI, Mettupalayam		
39.	Dr. M. Sivaprakash	Assoc. Prof., O/o. Dean (Forestry), FC&RI, Mettupalayam		
40.	Dr. S. Manivasagan	Assoc, Prof., (For.), KVK, The Nilairis		
41.	Dr. B. Sivakumar	Asst. Prof., Dept. of Silvi. & NRM, FC&RI, Mettupalayam		
42.	Dr. P. Kumar	Asst. Prof., Dept. of Silvi. & NRM, FC&RI, Mettupalayam		
43.	Dr. P. Radha	Asst. Prof., Dept. of FB&TI, FC&RI, Mettupalayam		
44.	Dr. R. Ravi	Asst. Prof., Dept. of FP&W, FC&RI, Mettupalayam		
45.	Dr. M. Senthil Kumar	Asst. Prof., Dept. of Sericulture, FC&RI, Mettupalayam		
46.	Dr. K. Senguttuvan	Asst. Prof., Dept. of Sericulture, FC&RI, Mettupalayam		
47.	Dr. P. Priyadharshini	Asst. Prof., Dept. of Sericulture, TNAU, Coimbatore		
48.	Dr. P. Mangammal	Asst. Prof., Dept. of Sericulture, HC&RI, Jeenur		
49.	Dr. R. Shanmuqam	Asst. Prof., (Sericulture), KVK, Ootv		
50.	Dr. M. Kiruba	Asst. Prof., KVK, Santhiyur		
51.	Dr. S. Vennila	Asst. Prof., (Forestry), AC&RI, Vazhavachanur		
52.	Dr. R. Aruna	Teaching Assistant, FC&RI, Mettupalayam		
53.	Dr. C.N. Hariprasath	Teaching Assistant, FC&RI, Mettupalayam		
