TAMIL NADU AGRICULTURAL UNIVERSITY

PROCEEDINGS

12th Agricultural Engineering Scientists Meet (22.05.2024)

LEAD CENTER

Agricultural Engineering College and Research Institute Coimbatore

<u>VENUE</u>

Agricultural Engineering College & Research Institute Kumulur

Directorate of Research

Tamil Nadu Agricultural University Coimbatore - 641 003

2024

1

PROCEEDINGS

12th Agricultural Engineering Scientists Meet

The 12th Agricultural Engineering Scientists' Meet was held at Seminar Hall of AEC&RI, Kumulur on 22nd May 2024.

The meeting was chaired by **Dr. V. Geethalakshmi**, Vice-Chancellor and offered opening remarks. Madam insisted to formulate multi-disciplinary research projects involving scientists from DCM & CPBG. It was suggested to develop a digital repository farm machinery specific to crops and hosted in Web portal for the benefit of farmers and stakeholders.

Dr. M. Raveendran, Director of Research, TNAU, Coimbatore delivered welcome address. It was emphasized on the development of machineries for small farmers and farm women. Efforts may be taken to mass produce farm machineries at a nominal cost for the benefit of farmers.

Dr. A. Raviraj, Dean, AEC&RI, Coimbatore presented the research highlights and major outcomes of the agricultural engineering research 2023-24. **Dr. P. Rajkumar**, Dean, AEC&RI, Kumulur presented the Action plan for 2024-25. The Professor and Heads of various Departments presented the Action Taken Report on the recommendations of 11th Agricultural Engg. Scientists Meet as per the agenda given below. **Dr. P. Rajkumar**, Dean, AEC&RI, Kumulur proposed formal vote of thanks.

The proceedings of 12th Agricultural Engineering Scientists' meet is furnished below:

I. Farm Machinery and Power Engineering

- 1. Technologies for MLT
- 2. Remarks on the ongoing research projects
- 3. Action Plan for the year 2024-25

II. Renewable Energy Engineering

- 1. Technologies for OFT
- 2. Technologies for Adoption
- 3. Remarks on the ongoing research projects
- 4. Action Plan for the year 2024-25

III. Food Process Engineering

- 1. Technologies for Adoption
- 2. Technologies for OFT
- 3. Remarks on the ongoing research projects
- 4. Action Plan for the year 2024-25

IV. Soil and Water Conservation Engineering

- 1. Technologies for OFT
- 2. Technologies for Adoption
- 3. Remarks on the ongoing research projects
- 4. Action Plan for the year 2024-25

V. Remarks

VI. List of Participants

I. FARM MACHINERY AND POWER ENGINEERING

1. Technologies for Multi Location Trials:

1.1 Mini tractor operated adjustable sugarcane detrasher

The de-trashing of sugarcane reduces the infestation of pests and diseases. The removal of unproductive leaves enhances the exposure of canes to the sun light which can increase the yield. Due to non-availability of labour and drudgery, most of the farmers are not practicing the de-trashing operation. Hence, the development of adjustable sugarcane detrasher could solve the issue of de-trashing of sugarcane and also to increase the cane yield. The proposed unit is more flexible and compact when compared to mechanical driven sugarcane detrasher. The de-trashing rollers unit can be operated by hydraulic motors with bi-directional rotation with help of Direction Control Valve (DCV) that will eliminate the problem of leaf entanglement during operation.

Salient features:

- The adjustable sugarcane de-trasher is suitable for 5 feet row spacing. It can be operated in the erect canes to avoid the crop damage.
- It can be operated till 450 mm from the bottom of the cane.
- Field capacity: 0.3 to 0.4 ha per h
- De-trashing efficiency and damage are 87 and 1.5%, respectively.
- Cost of attachment: Rs.60,000/-.
- Saving in time: 70 %
- Saving in cost: 66 %

Location: TNAU farms and farmer's field in Erode district.

1.2. Engine operated drum seeder

The engine operated drum seeder was developed as the combination drum seeder with engine operated paddy power weeder. The manually operated four row drum seeder which comprises of two seed drums, two lugged wheels and float were mounted on the existing power weeder frame by replacing the rotary blades. The unit is operated by a two stroke 1.75 hp petrol engine.

Salient features:

- It is used for sowing pre germinated paddy seeds in wetlands.
- Cost of power operated drum seeder: Rs. 50,000/
- Cost of operation: Rs.2150/ha including two labour for operating drum seeder
- Reduction in drudgery of the operation of drum seeder in puddled soil
- Can be used for dual purposes *viz*, weeding in between the rows and sowing of pre-germinated paddy seeds by replacement of weeding blades.

Location: Farmers' field

1.3. Palmyrah harvester

Palmyrah tree climber is designed and developed in such a way that any unskilled labour can climb with the help of it. Tree climbing frame is made of Mild steel square tube to withstand weight up to 150 kg. The machine is powered by hydraulic. The ornamental design for a Palmyrah Tree Climber comprising adaptability to varying trunk sizes, utilizing a hydraulic power source for efficient lifting of both the climbing device and the user, employing a hydraulic fluid-powered motor for torque output, and incorporating a bevel gear mechanism for smooth counter-clockwise rotation during ascending and descending motions.

Location: Kumulur, Trichy dt. and Killikulam, Tuticorin dt.

2. REMARKS ON THE ONGOING PROJECTS:

AICRP - Research projects

S. No	Number and Title of the Projects	Duration	Name of the PI & Co-PI	Remarks
AICRP on Farm Implements and Machinery				
1.	AICRP/AGE/CBE/FMR/ 002 Studies on spray droplet parameters using drones and development of drone seeder	01.04.2020 to 31.03.2024	PI: Dr. R. Kavitha Co-PI: Dr. A.P. Mohankumar	Results of the projects from 2020-2024 may be compiled.

2.	AICRP/AGE/CBE/FMR/ 002/2020/02 Design and Development of small groundnut combine harvester	01.04.2020 to 31.03.2024	PI: Dr. R. Kavitha Co-PI: Dr. A.P. Mohankumar	Groundnut combine may be popularized.
3.	AICRP/AGE/CBE/FMR/ 002/2020/03 Automatic transplanter for protray grown vegetable seedlings	01.04.2022 to 31.03.2023	PI: Dr. R. Kavitha Co-PI: Dr. P. Dhananchezhiyan	Copy right and Product patent may be submitted.
4.	AICRP/AGE/CBE/FMR/ 002/2021/02 Design and development of tractor operated turmeric combine harvester	01.04.2021 to 31.3.2024	PI: Dr. P. Dhananchezhiyan Co-PI: Dr. R. Kavitha	Intensive field evaluation may be conducted.
5.	AICRP/AGE/CBE/FMR/ 002/21/003 Design and development of mini tractor operated adjustable sugarcane detrasher	01.04.2021 to 31.03.2024	PI: Dr. A.P. Mohankumar Co-PI: Dr. R. Kavitha	Intensive field evaluation may be conducted in collaboration with sugar mill.
6.	AICRP/AGE/CBE/FMR/ 002/21/007 Design and development of Radio Frequency (RF) controlled pesticide applicator	01.04.2021 to 31.03.2024	PI: Dr. S. Thambidurai Co-PI: Dr. R. Kavitha	Necessary modifications may be carried out to operate even in the undulated field conditions and field evaluation may be conducted.
7.	AICRP/AGE/CBE/FMR/ 002/2023/01 Drone Based Variable rate Fertilizer Applicator	01.04.2023 to 31.03.2025	Dr. R.Kavitha, Dr. A. Surendrakumar Dr. A.P. Mohankumar Dr. Balaji Kannan	Algorithm may be submitted for copy right.
8.	AICRP/AGE/CBE/FMR/ 002/2023/02 Development of Robotic Cotton Harvester	01.04.2023 to 31.03.2025	Dr. R. Kavitha Dr. A. Surendrakumar Dr. P. Dhananchezhiyan Dr. S. Thambidurai	Design of robotic cotton picker may be submitted for patent.
9.	AICRP/AGE/CBE/FMR/ 002/2023/03 Prototype Feasibility Testing • Tractor operated Phule hydro mechanically based inter row cum intra row weeder for Orchard (MPKV, Rahuri)	01.04.2023 to 31.03.2024	Dr. R. Kavitha Dr. P. Dhananchezhiyan Dr. A.P. Mohankumar Dr. S. Thambidurai	The feasibility trials may be conducted as per the test standards.

	Tractor front mounted			
	reaper (PAU) for sesame			
	• Smart Seeder for paddy			
	straw management			
	(PAU-			
	• Tractor operated potato			
	planter for turmeric			
10.	AICRP/AGE/CBE/FMR/0	01.04.2023	Dr. R. Kavitha	The assigned
	02/2023/04	to	Dr. P.	target area may
	• Frontline	31.03.2024	Dhananchezhiyan	be achieved.
	demonstration of		Dr. A.P.	
	Tractor operated Check		Mohankumar	
	basin former (MPKV),		Dr. S. Thambidurai	
	Drone spraying, IISR			
	modified sugarcane cutter			
	planter, Complete			
	Mechanization package of			
	millet crops and Small			
ATC	maize narvester (TNAU)			
11	ATCRD/AGE/CRE/AMC/0			Modified model
11.	AICKP/AGE/CBE/AMC/0	01.12.2021	DI. A. Surendrakumar	may also be
	Development of remote-	31 3 2024	Surenurakunnar,	natented
	controlled drum seeder	51.5.2027		patenteu.
12	ATCRP/AGE/CBE/AMC/0	01 12 2021	Dr PK	Expedite the
12.	03/2021/02	to	Padmanathan	survey work as
	Accident survey in selected	31 3 2024	Dr A	ner the
	districts of Tamil Nadu	511512021	Surendrakumar	objectives.
EXT	ERNALLY FUNDED PROJECT	ſ		
13.	NADP /AECRI/ CBE/FMPE/	01.04.2022	PI	Process of
	2022/ R001	to	Dr. A. Raviraj,	obtaining
	Establishment of Farm	31.03.2024	Dr. R. Kavitha,	approval for the
	Machinery and Plant		Co-PI	testing centre
	Protection Equipment		Dr. M. Rajeswari,	may be initiated
	Testing Centre at Madurai		Dr. P.K.	after the
			Padmanathan,	purchase of spray
			Dr. P.	particle analyzer.
			Dhananchezhiyan	
			Dr. A.P. Mohan	
			Kumar	
14.	GOI/ACRI/KKM/HOR/2	2021	Dr. A.	Trials may be
	022/R0001	to	Surendrakumar,	conducted at
	Innovative Research and	July 2024	Dr. R. Thiyagarajan	Killikulam
	aevelopment Components in			
	Paimyran for upliftment of			
1		1	1	
	Marginai farmers in Tamii			
1 -	Nadu	01 07 2021		Intoncius field
15.	Nadu CIL/AEC&RI/CBE/FMPE /2021/P001	01.07.2021	Dr. A.	Intensive field
15.	Nadu CIL/AEC&RI/CBE/FMPE /2021/R001	01.07.2021 to	Dr. A. Surendrakumar	Intensive field trials may be

	Design and development of machinery for harvesting			
Univ	and conection of neerin mult			
16.	AEC&RI/ PKM/ FMP/AGRL. ENGG/ 2023/150	June 2023 to May 2024	Dr. P. Kamaraj, Dr. P. Aruna, P&H, Dept. of Post	Intensive field trials may be
	Development of manual operated fruit harvesting tool (Mango/Sapota/Guava)	1109 2021	Harvest Technology, HC&RI, Trichy	
PG 1	Thesis Work	1	, , ,	
17.	Design and Development of Inter and Intra Row Weeder	June 2020 to May 2023	Student: Kommanaboyina Rajuyadav 2020644001, Chairman: Dr. A. Surendrakumar, Professor	The work has been completed as per the objectives.
18.	Design and Development of Autonomous Site-Specific Variable Rate Fertilizer Applicator for Maize	2020-2024	Student: Rita Patle, Chairman: Dr. R. Kavitha, Professor and Head	The work has been completed as per the objectives.
19.	Development and evaluation of Mechanical type Neem fruit picker collector	2020-2024	Student: M. Gowtham Chairman: Dr. B. Suthakar, Associate Professor	The work has been completed as per the objectives.
20.	Development of sensor based self-adjusting check row system for transplanter in SRI method of transplanting	2020-2024	Student: Gund Rajesh Ramesh Chairman: Dr. P. Dhananchezhiyan	The work has been completed as per the objectives.

3. ACTION PLAN FOR THE YEAR 2024-25

Broad area	Activity	Deliverables	Scientist in-charge
Action Plan 1 Small Farm Mechanization	Design and development of mini tractor operated adjustable sugarcane detrasher (Continuing)	Mini tractor adjustable detrasher operated sugarcane	Dr. A.P. Mohankumar Dr. R. Kavitha
	Development of rice transplanter for small farm holdings (New)	Low-cost rice transplanter	Dr. R. Thiyagarajan

Action Plan 2: Mechanization of Horticulture crops	Developmentofengineoperatedhand-heldsugarcanedetrasher (New)DevelopmentDevelopmentbatteryoperatedsugarcanesettcutter (New)DevelopmentofmechanizationpackagepackageinTurmericcultivation	Engine operated hand-held sugarcane detrasher Battery operated sugarcane sett cutter Tractor operated combine harvester for turmeric.	Dr. A. Surendrakumar Dr. R. Kavitha Dr. P. Kamaraj Dr. R. Thiyagarajan Dr. P. Dhananchezhiyan Dr. A.P.
	(Continuing) Design and development of machinery for the collection of neem fruit (Continuing)	Autonomous neem fruit collector	Mohankumar Dr. A. Surendrakumar Dr. B. Suthakar
	Development of tractor hydraulic operated palmyrah tree climber (Continuing)	Tractor hydraulic operated tree climber for palmyrah	Dr. A. Surendrakumar Dr. R. Thiyagarajan
	Development of automatic turmeric rhizome planter (New)	Automatic turmeric rhizome planter	Dr. R. Kavitha Dr. A.P. Mohankumar
	Development of Garlic planter (New)	Battery operated garlic planter	Dr. P. Padmanathan Dr. S. Thambidurai
	Development of hydraulically operated cassava harvester (New)	Cassava harvester	Dr. S. Thambidurai Dr. R. Kavitha
Action Plan 3: UAV in Agriculture	Drone based variable rate fertilizer applicator (New)	Drone based variable rate fertilizer applicator for paddy	Dr. R. Kavitha Dr. A. Surendrakumar Dr. A.P. Mohankumar Dr. BalajiKannan
	Development of Radio Frequency (RF)controlled pesticide applicator (Continuing)	Radio Frequency (RF) controlled sprayer	Dr. B. Suthakar

II. RENEWABLE ENERGY ENGINEERING

1. Technologies for On Farm Trials:

1.1. Solar powered weeder

The walk-behind solar powered rotary weeder was developed for weeding of 30 cm crops spacing for small holder agriculture. The unit consists of Solar array, DC motor, gearbox, lithium-ion battery pack inbuilt battery management system, traction wheels, rotary blades, supporting frame and control panel. Solar energy is converted into electricity by a standalone solar PV charging system and the energy stored in battery was used for operating the weeder. During operation, the rotor blades cut the weeds while the weeder moves forward. Speed adjustment handle in the weeder was used for controlling the operations and holding the unit.

Salient features:

- Suitable for small farm holdings
- Walk behind type and gender friendly equipment
- Weeding in crops with 30 cm spacing
- Field capacity: 0.7 ha/day
- Field efficiency: 62%
- Weeding efficiency: 88%.
- Total operational cost: Rs. 580/ha.

2. Technologies for Adoption:

2.1. Synthesis of carbon rich products from tea industry wastes

Physicochemical characteristics of tea processing wastes, tea pruning wastes and silver oak pruning wastes were studied as per the ASTM procedures. The thermal degradation behaviour was studied in a thermogravimetric analyser at 10, 20, 30, and 40°C min⁻¹ for tea processing waste, tea pruning wastes and silver oak pruning waste. The process conditions were optimized for the production of biochar and activated carbon from tea processing waste, tea pruning waste and silver oak waste. Notably, the maximum biochar yield of 36.36% was obtained from tea processing waste at 569°C and 30 min with an N₂ flow rate of 150 ml min⁻¹. The maximum activated carbon yield of 28.08 % was obtained at the optimized conditions of 964°C and 76 min with an N₂ flow rate of 150 ml min⁻¹ for tea processing waste. Biooil yield of 30-50% was recorded for tea pruning and tea processing wastes. Hydrochar yield was 55.72% at 225°C for tea processing waste. The carbon molecular sieves (CMS) yield was 23.75 % at 450-500°C for tea pruning waste. It was found that reaction time and reaction temperature significantly influence the yield of carbon rich bioproducts.

2.2. Hydrogen production from agro-residues through steam gasification

Hydrogen production through steam gasification is developed for Biomass viz. coconut shell, casuarina wood and corn cobs. From the biomass characterization results, corncob boasts the highest carbon content among the materials compared (40.09%), contributing to a suitable heating value. It contains a significant amount of cellulose (38.34%) - a readily convertible biofuel source. Nanometal-based catalysts are promising for hydrogen production due to their chemical stability, low toxicity, excellent photoactive properties, and ease of separation from reaction mixtures. Four nanometals were chosen for the study, biochar as the supporting material, and the nanocatalyst was optimized based on factors like catalyst type, loading and percentage. The optimized nanocatalyst, *i.e.*, 5% of 0.3% selenium loaded in biochar was used in the developed downdraft gasifier with a gas conditioning system, and the hydrogen production has been optimized. Under the optimized conditions of air flow rate (AFR) – 30 l/min, steam biomass ratio (SBR) – 3:1 and catalyst – 5 %, the feedstock consumption rate (FCR) was found to be 3.4 kg/h with a hydrogen-enriched syngas flow rate of 5.746 m³/h and a syngas yield of 1.69 m³ kg⁻¹ with cold gas efficiency of catalytic steam gasification (CSG) of 82.5 %. The hydrogen-enriched syngas was forced into the separation column containing CaO, zeolite and carbon molecular sieve (CMS) for further purification, and the purified gas was tested.

S. No.	Number and Title of the Projects	Duration	Name of PI & Co-PI	Status
Univ	ersity Research Projects			
1.	AECRI/ECK/REE/RIC/2021/00	Apr 2021	Dr. P.	The project is
	1	to	Subramanian	to be
	Farm scale solar dryer drying characteristics and their influence on	Mar 2024	Dr. P. Masilamani	completed
2		Nov 2020	Dr. Jachung	Work may be
Ζ.	AECR1/ KUM/ BUE/ 2020/ 001	100 2020		work may be
	Development of Portable Forced	to	Davidson	expedited as
	Convective Solar Dryer	Dec 2024		per the objectives
ICAF	R - AICRP on EAAI Projects		·	
1.	CMB/EAAI/DRET-SET/2022/1	Sep 2020	Dr. A. Kamaraj	The project is
	Development and Standardization of	to		to be
	Hybridized Controlled Atmosphere	Mar 2024		completed
	Solar Dryer for enhancing			
	commercial value of fruits			

3. Remarks on the Ongoing Research Projects:

2.	CMB/ EAAI/ DRET-TCT/ 2022/ 1 Energy rich syngas generation through low-cost catalytic gasification	Sep 2022 to Mar 2024	Dr. D. Ramesh	The project is to be completed
3.	CMB/EAAI/DRET-BCT/2022/1 Bioethanol production from matured coconut waste water by single phase fermentation	Sep 2022 to Mar 2024	Dr. R. Parimaladevi Dr. P. Vijayakumary	The project is to be completed
4.	CMB/EAAI/DRET-BCT/2023/1 Hydrodynamic cavitation of sago processing wastewater for enhanced biogas production	Dec 2023 to Nov 2025	Dr. P. Vijayakumary Dr. R. Parimaladevi	Work may be expedited as per the objectives
5.	CMB/EAAI/DRET-LBT/2022/1 Biocrude oil production from water living biomass through Biological and Thermochemical process	Sep 2022 to Mar 2024	Dr. V. Palaniselvam Dr. K. Chandrakumar	The project is to be completed
6.	CMB/EAAI/DRET-LBT/2022/2 Production of aromatic hydrocarbons and olefins from coir pith biooil through hydrodeoxygenation using catalysts	Sep 2022 to Mar 2024	Dr. K. Chandrakumar Dr. V. Palaniselvam	The project is to be completed
7.	CMB/EAAI/DRES/2022/1 Popularization of large-scale pyrolytic reactor	Apr 2022 to Mar 2024	Dr. R. Mahendiran	Success story may be prepared
8.	CMB/EAAI/EMA/2023/1 Design and development/adoption of equipment and practices to reduce energy intensity in the identified operations of sugarcane production and jaggery processing	Apr 2023 to Mar 2025	Dr. R. Mahendiran Dr. P. Vijayakumary	Work may be expedited as per the objectives and design patenting may be applied.
ICAF	R - CRP on EA Projects			
1.	TNAU/CRP-EA/2022/01 Hydrogen production from agro residues through steam gasification	Aug 2022 to Mar 2024	Dr. D. Ramesh Dr. V. Palaniselvam	The project is to be completed
2.	TNAU/CRP-EA/2022/03 Quantum Dots embedded PE films for improving biomass production of microalgae used for biofuel production	Apr 2022 to Mar 2024	Dr. D. Ramesh Dr. S. Karthikeyan	The project is to be completed
Exte	rnally funded Scheme			
1.	Promotion of Sustainable Agriculture for Economic Empowerment of Malayali tribes of Pachamalai	Sep 2020 to Mar 2025	Dr. S. A. Ramjani Dr. S. S.Sivakumar Dr. J. John Gunasekar Dr. V. Alex Albert Dr. M. Dhandapani	Work may be expedited as per the objectives

2.	NRM/DBT/CBE/ENS&REE/2022 /R002 Sustainable management of tea waste to transform the tea industry into carbon neutral and zero waste industry	Apr 2022 to Mar 2025	Dr. P. Subramanian Dr. D. Ramesh Dr. P. Vijayakumary	Work may be expedited as per the objectives.
3.	ICAR- NASF/AEC/CBE/REE/2023/R00 1 Design and development of solar- powered prime mover with multi-tool attachments for small farm holdings	June 2023 to May 2026	Dr. R. Mahendiran Dr. B. Suthakar	Work may be expedited as per the objectives.
4.	SUR/2022/001739 Development of yeast inoculant for soil and plant health improvement and drought mitigation	26.10.2023 to 25.10.2026	Dr. R. Parimaladevi	Work may be expedited as per the objectives.

4. ACTION PLAN FOR THE YEAR 2024-25

Activity	Name of the	2024 -25	Deliverables/
	Scientist		expected
			outcome
Solar assisted	Dr. D. Ramesh	Design and	Optimized
biomass pyrolysis	Dr. A. Kamaraj	development of pilot	process condition
	Dr. S. Sriramajayam	scale solar assisted	for biochar
		biomass pyrolysis	production
		reactor for biochar	
		production: Process	
		optimization and	
		product quality	
		assessment	
Biomethanation	Dr. R. Parimaladevi	Preprocessing	Enhanced biogas
process for	Dr. P. Vijayakumary	techniques for industrial	yield
industrial effluents	Dr. S. A. Ramjani	effluents	
Development of	Dr. R. Mahendiran	Development of solar	Solar powered
solar powered	Dr. B. Suthakar	powered prime mover	prime mover for
prime mover with		with multi-tool	low draft power
multi-tool		attachments for small	operations
attachments		holder agriculture	
Solar powered AI	Dr. P. Subramanian	Solar powered AI based	AI based solar
based automated	Dr. S. Joshua	self-driving automated	weed controller
weed controller	Davidson	weed controller	

III. FOOD PROCESS ENGINEERING

1. TECHNOLOGIES FOR ADOPTION

a. Development of mango fruit stone remover cum pulper

Mango fruit stone remover cum pulper with food grade stainless steel was developed to remove stone from mango fruit. The unit consists of two compartments one for removing stone and pulp at the top and another for straining the mango pulp at the bottom.

Salient features:

- Capacity of the unit: 1000 kg/h
- Average pulp recovery: 65% (20% more than manual method)
- Cost of the unit: Rs. 2,50,000/-

b. Development of and mango stone decorticator

Mango stone decorticator consists of a main frame, fabricated using mild steel angle iron. It consists of a cylinder connected at the centre of a shaft. A concave is fixed to the main frame along the cylinder cover. A blower is installed in the decorticator unit separation of shell and kernel. Material passing through the sieve falls into a trapezoidal chamber which is fixed below the decortication section. This opening lead to shell outlet. The blower facilitates separation of kernel from dust and shell.

Salient features:

- Capacity: 1000 kg/h
- Average pulp recovery: 65% [20% more than manual method]
- Hygienic and less time consuming

c. Development of seed decorticator for Vahl fruit (Sapindus emarginatus)

A desheller for soapnut was developed. It consists of a metallic drum provided with rasp bars, concave, an oscillating sieve, power source and power drive. For optimizing the moisture content for deshelling, preliminary trials were conducted and 10% (db) moisture content was found effective for the deshelling operation. The performance of the developed desheller was evaluated in terms of deshelling efficiency by varying the peripheral speed of the deshelling drum and feed

rate. Saponin was extracted from the shell of soapnut using aqueous extraction and conducted HPLC analysis.

Salient features:

- Capacity: 60 kg/h
- Moisture content: 10%
- Drum speed: 9 m/s
- Deshelling efficiency: 98 %

d. Development of annatto pod decorticator

Annatto decorticator cum cleaner unit comprises of a roller sheller and concave with sieve clearance to facilitate breaking the pods and conveying broken pods and seeds through the blower towards the cleaner for separating the seeds. The shelling efficiency of 99.53 % was obtained at 8 % (w.b.) moisture content at the sheller roller speed of 350 rpm with a minimum seed loss of 1.62 %. On the other hand, the maximum cleaning efficiency of 98.94 % was observed at a moisture content of 11.75 % (w.b.), and a sieve unit speed of 250 rpm with a minimum seed loss of 1.59 %.

Salient features:

- Capacity: 200 kg/h
- Shelling efficiency: 99 % 300 rpm with 8% moisture content (wb)
- Cleaning efficiency: 98 %

e. Development of neem fruit depulper

Neem fruit depulper consists of a hopper, drum cylinder, roller, motor with pulley, water supply system, recirculation tank, supporting frame and outlet. The highest depulping efficiency was obtained at 15 mm clearance between roller and cylinder, roller speed of 550 rpm and feed rate of 125 kg/h. It was also observed that when the feed rate was increased above 125 kg/h, there was a decrease in depulping efficiency.

Salient features:

- Optimum speed of the roller: 550 rpm Clearance between perforated cylinder and roller:15 mm
- Capacity: 125 kg/h
- Depulping efficiency: 94 %
- Percentage of broken: 6 %

f. Development of hybrid system for pulse fractionation for high value pulse based functional foods

An air classifier consisting of nine outlets was developed. The first outlet for coarse flour, while the last outlet had very fine flour. The air classifier efficiency was calculated based on the air flow rate. The average air classifying efficiency of the pulses at 0.01615 m³/s and 0.0494 m³/s are 69.6 % and 52.36 %. The percentage of protein content was increased in red lentils from 22.4 % to 71.2 %; lupin from 33.1 % to 56.7 %; and chickpeas from 20.3 % to 55.9 %. The percentage of starch content was increased in red lentils from 14.6 % to 21.8 %; lupin from 7.5 % to 30.5 %; and chickpeas from 14.4 % to 28.5 %.

Salient features:

- 940 rpm & 1.5 mm screen opening was found to be the best for protein fractionation
- Average particle size of starch fraction was 0.18 mm
- Average particle size of fibre fraction was 0.12 mm
- Average particle size of protein fraction was 0.09 mm

2. TECHNOLOGIES FOR ON FARM TRIAL

a. Development of turmeric slicer

The turmeric slicer consists of main frame, feed hopper, rotary disc with blades, guiding plate and outlet. Feed hopper is provided with two openings each of 25 and 35 mm diameter. The rotary disc is connected to the central shaft. The clearance shall be adjusted in order to vary the slice thickness as 2, 4 and 6 mm. The guided plate is fitted below rotary disc to help the distribution of slices uniformly. The guiding plate, shaft and rotary disc rotates at same speed. The turmeric rhizomes fed to the feed hopper get sliced when it hits the rotating blade. Thus the turmeric slices are obtained.

Salient features:

- Slicer capacity: 15 kg/h
- Slicing efficiency: 94%
- Percent broken: 6%

Location: Ulavan Producer Company, Erode

b. Design and development of thresher for grain amaranthus

The grain amaranthus thresher consists of threshing drum, feeding hopper and top cover, concave, blower, sieve assembly, main frame and power transmission. The grain amaranthus stalks are fed through the hopper and are pressed between the two roller and concave. The impurities are blown away and the seeds are obtained in the clean grain outlet. The machine parameters are concave clearance 9 mm, power requirement 1 hp, speed 90 rpm and the mechanism of action is rubbing.

Salient features:

- Capacity 18 kg/h with concave clearances at 22 mm
- Threshing efficiency 94 %
- Cleaning efficiency 92 %
- Feed rate of 13 kg/h with concave clearances at 9mm resulted in threshing efficiency of 94% in TNAU model.

Location: Keystone foundation, Kothagiri

c. Development of household centrifugal dehuller for small millets

A household millet dehuller was developed for de-hulling of small millets. The unit consists of feed hopper, screw auger, impeller with curved vanes, de-hulling chamber, separation chamber, grain outlet, husk outlet, motor and power transmission. The splitting of the husk occurs due to impact of the impeller vanes and the husk is separated from the kernels.

The husk and kernel mixture passes through a chamber where the dehulled millets and husk are separated by means of a blower provided at the bottom of the unit. The dehulled millets and the husk are collected from different outlets. The performance of the unit was evaluated for various millets.

Salient features:

- Dehulling efficiency 90% at a moisture content of 11% d.b.
- Broken percentage was negligible
- Capacity of the unit: 3-10 kg/h

Location: Ramasamy Chinnammal Trust, Coimbatore

d. Development of turkey berry deseeder

Turkey berry deseeder consists of feed hopper, two corrugated rollers, water spray system, oscillating sieve, seed outlet and deseeded turkey berry colleting unit. The berry passes through the rollers and then through two sieves: the first sieve collects crushed berries, while the second collects seeds, and water is collected at the bottom. The highest deseeding efficiency was found at 5 mm of clearance. The increase or decrease in the clearance results in the decrease in the deseeding efficiency.

Salient features:

- Capacity: 5kg/h
- Power required: 1 hp
- Optimum speed: 50rpm
- Deseeding efficiency: 90%

Location: Department of Horticulture, Erode

e. Development of Moringa depodding machine

The moringa depodding machine consists of a feed picker roller, situated at the base of the hopper to regulate the movement of pods into the depodding rollers. The depodding rollers break open the pods by applying pressure, allowing the seeds and chaff to be detached from each other. Once the pods are broken, the mixture of seeds and chaff falls onto an inclined oscillating sieve. Meanwhile, the chaff, which is lighter and larger, remains on the surface of the sieve and is guided towards a separate outlet for disposal. A 0.5 hp motor, powers the entire operation, ensuring synchronized movement of the feed picker roller, depodding rollers, and the oscillating sieve.

Salient features:

- Capacity: 50 kg/h
- Depodding efficiency: 87 %

Location: HC & RI, Periyakulam

3. REMARKS ON ONGOING PROJECTS

AICRP	AICRP-PHET scheme projects					
S. No.	Number and Title of the Projects	Name of PI & Co-PI	Duration	Status		
1.	PH/CO/2023/001	Dr. M. Balakrishnan	April 2023	Product may		
	Encapsulation of monolaurin from	Dr. P. Sudha	to March	be patented		
	coconut oil for enhancing its	Dr. K. Gurusamy	2025			

	bioavailability			
2.	PH/CO/2023/002 Development of process protocol for export potential value-added products from turmeric	Dr. M. Balakrishnan Dr. E. Jeyashree Dr. M. Anand Dr. A. Ramalakshmi Dr. K. Gurusamy	April 2023 to March 2025	The equipment may be given for on farm trials
3.	PH/CO/2023/003 Development of pulsed magnetic field system for shelf-life extension of fruit juices	Dr. T. Pandiarajan Dr. M. Balakrishnan Dr. K. Gurusamy Dr. M. Anand	April 2023 to March 2025	Project may be speeded up for development of prototype
4.	PH/CO/2023/004 Design and Development of thresher for grain amaranthus and extending the shelf life by different storage system	Dr. G. Amuthaselvi Dr. M. Balakrishnan Dr. M. Anand	April 2023 to March 2025	TNAU model thresher details to be provided in detail
5.	PH/CO/2023/005 Development of finger millet sprout- based functional fermented beverage using probiotic, prebiotic and synbiotics	Dr. A. Ramalakshmi Dr. M. Balakrishnan Dr. K. Gurusamy	April 2023 to March 2025	Protocol may be given for technology release
6.	PH/CO/2023/006 Development of machinery for continuous depulping and drying of neem fruit for extraction of Azadirachtin	Dr. P. Sudha Dr. M. Balakrishnan Dr. T. Pandiarajan Dr. A. Ramalakshmi	April 2023 to March 2025	The equipment may be released
7.	PH/CO/2023/007 3D food printing of micronutrient enriched millet based functional food	Dr. M. Balakrishnan Dr. S. Parveen	April 2023 to March 2025	Product may be given for technology release
8.	CAR/AEC/KUM/APC/2017/D00 5 ICAR- Under Consortia Research Project on Secondary Agriculture - Value chain on commercial exploitation of tamarind seed and moringa and its derivatives	Dr. Rajkumar Dr. A. Balasubramanian Dr. I.P. Sudagar Dr. P. Masilamani Dr. R. Arulmari Dr. S. Arokiamary	April 2021 to March 2026	Project may be continued
Unive	rsity Research Projects			
1.	AEC&RI/CBE/FPE/AGRL. ENGG/2023/132 Development of household centrifugal dehuller for small millets	Dr. M. Balakrishnan Dr. P. Preetha	April 2023 to March 2024	Field trial may be conducted
2.	AECRI/CBE/FPE/2023/001 Development of weight grader for coconut	Dr. T. Pandiarajan Dr. P. Sudha	Jan 2023 to Mar2025	Grading standards need to be set as per market requirement
3.	AEC&RI/CBE/FPE/HOR/2023/00 1 Detection of aflatoxin contamination	Dr. A. Ramalakshmi Dr. M. Balakrishnan	April 2023 to March 2025	The study may be conducted for other spices

	in spices and their decontamination using lactic acid bacteria			
4.	AEC&RI/CBE/FPE/AG.ENGG/202 3/002 Development of deseeder for turkey berry and studies on drying kinetics for extension of shelf life	Dr. G. Amuthaselvi Dr. M. Balakrishnan	January 2023 to December 2024	On farm trials may be conducted
5.	AEC&RI/CBE/FPE/AG.ENG./2023 /003 Development of table top aggregatum onion peeler	Dr. S. Parveen Dr. M. Balakrishnan	March 2023 to February 2025	Project may be continued
6.	AEC&RI/CBE/FPE/AG.ENG. /2023/004 Supercritical fluid extraction of bixin from annatto pods	Dr. P. Sudha Dr. T. Pandiarajan	December 2023 to Jan' 2024	Project completion report may be submitted
7.	AEC&RI/ KUM/ FPE/AGRL.ENGG/ 2023/163 Evaluation of radiofrequency dryer for non-chemical disinfestation of dehulled millet for enhancement of shelf-life	Dr. R. Arulmari Dr. M. Balakrishnan Dr. S. Jeyarajan Nelson	March 2023 to April 2025	Project may be continued
8.	AEC&RI/ KUM/ FPE/AGRL.ENGG/ 2023/170 Modification and Performance evaluation of (<i>Moringa oleiferq L.</i>) pod cutting machine	Dr. R. Arulmari Dr. I.P. Sudagar Dr. M. Dinesh Pandi Dr. K. Balaji	March 2023 to April 2025	Project may be continued
9.	ENGG/KUM/PFE/HOR/2022/00 1 Design and Development of a prototype moringa (<i>Moringa oleifera</i>) depodding and moringa seed deshelling machine	Dr. R. Arulmari Dr. T. Pandiarajan	January 2022 to December 2023	On-farm trials may be conducted
10.	AECRI/CBE/CPHT/Ag. Engg./2022/001 Intensive evaluation of Mango fruit stone remover cum pulper and Mango stone decorticator in Mango processing industries	Dr. V. Thirupathi Dr. M. Balakrishnan	December 2022 to May 2024	Machinery may be released
11.	ENGG./CBE/CPHT/2022/001 Processing of fruit extracts of Indian spinach (<i>Basella rubra.</i> L) for application as a natural food colourant	Dr. H. UshaNandhini Devi Dr. S. Karthikeyan Dr. P. Geetha	December 2022 to April 2024	Project may be continued

12.	AEC&RI/CBE/HOR/HORT.CROPS/ 2023 /187 Development of novel value-added products from high pungent chilli (<i>Capsicum chinense</i> Jacq.) genotype to enhance farmer's income	Dr. H. Usha Nandhini Devi Dr. S. Karthikeyan, Dr. P. Geetha,	August 2023 to January 2024	Project may be closed
Extern	ally funded projects			1
1.	DST-SERB- SHRI/AECRI/CBE/FPE/2023/R00 1 Development of continuous 3D food printer for Millet based functional food	Dr. M. Balakrishnan Dr. A. Ramalakshmi	Novembe r 2023 to October 2025	Project may be continued
2.	DST- SERB/AECRI/CBE/FPE/2022/R00 1 Design and Development of a decorticator for Annatto and development of prototype extraction unit with advanced techniques for bixin for sustainable use in food industry	Dr. P. Sudha	December 2021 toDecemb er2024	Product may be patented
3.	CIL/AEC& RI/FPE/2021/R001 Design and development of machinery for depulping and drying of neem (<i>Azadirachta indica</i>) fruit	Dr. P.Sudha Dr. M. Balakrishnan Dr. T. Pandiarajan Dr. R. Mahendiran	Sep 2021 toMarch 2025	Field trial may be conducted
4.	ICAR- NASF/AEC/KUM/FPE//2023/R001 Development of Smart Foods, Bio Composites, Green packaging and Bio energy from Agro residues	Dr. S. Parveen Dr. P. Rajkumar Dr. R. Arulmari	July 2023 to May 2026	Project may be continued

4. ACTION PLAN FOR THE YEAR 2024-25

Theme I: Improved Post-Harvest Handling of Fruits and Vegetables				
Action Plan 1: Po	st-harvest processing a	and value addition of pa	almyrah	
Activity	Name of the	2024-25	Deliverables/	
_	scientists		expected outcome	
Post-harvest	Dr. G. Amuthaselvi	Development of tender	Development of	
processing and	Dr. M. Balakrishnan	palmyrah fruit remover	process protocol for	
value addition in	Dr. S. Ganapathy	Radio frequency	canning of ice apple	
palmyrah	Dr. M. Anand	sterilization and		
		canning of ice apple		

Action Plan 2: Development of deseeder for Indian Jujube fruit				
Design and	Dr. P. Sudha	Development of	Mechanized	
development of	Dr. M. Balakrishnan	deseeder for Indian	processing of	
deseeder for	Dr. T. Pandiarajan	Jujube fruit	Indian jujube to	
Indian Jujube fruit			reduce human	
			drudgery	
Theme II: Novel F	Processing Technologie	es		
Action Plan 3: Me	echanization and extr	action of anthocyanin	from Roselle using	
advanced method	s			
Development of	Dr. P. Sudha	Development of	Anthocyanin	
leaf, stem and	Dr. T. Pandiarajan	separator for Roselle	extraction from	
calyx separator	Dr. M. Balakrishnan		calyx	
for Roselle				
Action Plan 4: Dev	velopment of multi hea	ad 3D printing for mille	t products	
Development of	Dr. M. Balakrishnan	Development of multi	Micronutrient	
multi head 3D	Dr. S. Parveen	nozzle system for 3D	enriched millet	
printer for millet	Dr. A. Ramalakshmi	food printing	based functional	
based functional			food products	
foods				
Action Plan 5: Dev	velopment of pulsed m	agnetic field system fo	r beverages	
Development of	Dr. T. Pandiarajan	Development of pulsed	Enhancement of	
continuous pulsed	Dr. M. Balakrishnan	magnetic field	shelf life of fruit	
magnetic field	Dr. M. Anand	processing system for	juice by Continuous	
system for fruit	Dr. A. Ramalakshmi	beverages	pulsed magnetic	
juices			field processing	
			system	
Action Plan 6: Dev	velopment of millet ba	sed probiotic functiona	l beverage	
Development of	Dr. A. Ramalakshmi	Development of	Finger millet based	
finger millet	Dr. M. Balakrishnan	process protocol for	probiotic functional	
probiotic	Dr. G.G. Kavithashree	probiotic millet	beverages for gut	
functional		beverage	health	
fermented		Production of	improvement	
beverage		functional fermented		
		foods at pilot scale		
		level		
Action Plan 7: Sup	percritical fluid extract	ion of anthocyanin fror	n karonda	
Supercritical fluid	Dr. M. Balakrishnan	Optimization of	Natural colourant	
extraction of	Dr. P. Sudha	process conditions for	from karonda fruit	
anthocyanin from	Dr. Udaykumar Nidoni	super critical fluid	tor food	
karonda	Dr. A. Ramalakshmi	extraction of	applications	
		anthocyanin		
Action Plan 8: Dev	elopment of Cold plas	ma technology for mus	hroom preservation	
Cold plasma	Dr. M. Balakrishnan	Enhancement of shelf	Optimization of	
technology for	Dr. S. Ganapathy	life of mushroom by	process parameters	

enhancing the	Dr. A. Ramalakshmi	cold plasma	for cold plasma
shelf life of	Dr. A. Senthil	technology	treatment
mushroom	Dr. G.	Nutritional and	
	Thirubuvanamala	microbial quality of	
		mushroom will be	
		ensured for	
		consumption	
Action Plan 9: Ret	ort packaging of RTE	foods	
Optimizing retort	Dr. S. Karthikeyan	Optimization of	Chemical free
packaging for RTS	Dr. V. Thirupathi	process conditions -	long shelf life
and RTE foods	Dr. P. Geetha	temperature, pressure	
	Dr. V. ArunGiridhari	and holding time	Improved
	Dr. G. G. Kavithashree	Validation of	export
		nutritional quality and	potential for
		microbial safety	RTS juice
Action Plan 10: Sh	elf-life study of Indian	bakery foods	
Accelerated shelf-	Dr. S. Karthikeyan	Developing system for	Time saving
life study of Indian	Dr. V. ArunGiridhari	Accelerated shelf life	
bakery foods	Dr. P. Geetha	study	Predictive
	Dr. G. G. Kavithashree	Validation of	
	Dr. V. Thirupathi	developed data with	Increased scope for
		real time data	food product
			development
Theme III: Bio-pro	specting and Waste ut	tilization	, ·
Action Plan 11: Ext	traction of starch from	tapioca	
Production of	Dr. S. Parveen	Production of Clean	Modification of
clean label starch	Dr. G. Amuthaselvi	label starch from	tapioca starch by
from tapioca by	Dr. M. Anand	tapioca for food	heat moisture
physical	Dr. K. Gurusamy	applications	treatment,
modifications and	,		annealing, and cold
its industrial			plasma
pertinence			P
Action Plan 12: De	velopment of Carbon (Duantum dots-based bi	opolymer film
Development of	Dr. M. Balakrishnan	Synthesis and	CQD based
Carbon Quantum	Dr. A. Ramalakshmi	characterization of	biopolymer
dots incorporated	Dr. Jong Whan Rhim	the Carbon Quantum	packaging film for
functional	Dr. V. Thirupathi	Dots (COD's) from	enhancing the shelf
biopolymer films		various biomass	life of the fruits and
for food quality		Development of	vegetables
assurance		COD's incorporated	
		biodegradable	
		packaging film	
Action Plan 13: De	evelopment of green p	ackaging materials from	m agro residues
Development		Croop po dia aire a	To develop on l
LUEVELONMENT OF	Dr. I. P. Sudagar	Green packaging	to develop and

green packaging	Dr. P. Rajkumar	boxes for secondary	characterize	the
materials from	Dr. R. Arulmari	and tertiary food	green pack	aging
agro residues		packaging	boxes from	agro
			waste	
Action Plan 14: Ext	traction of glucosinola	tes from Moringa		
Extraction of	Dr. R. Arulmari	Protocol for	Optimization	of
glucosinolates	Dr. P. Rajkumar	extraction of	process	
from Moringa	Dr. I. P. Sudagar	glucosinolates from	parameters	for
		Moringa	extraction	of
			glucosinolates	
			from Moringa	

IV. SOIL AND WATER CONSERVATION ENGINEERING

1. Technologies for On-Farm Trials

Optimizing mulched ridge-furrow rainwater harvesting system for rainfed maize production

Trials were conducted to optimize rainwater harvesting system for maize production. Different width ridges, covering materials and mulched ridge-furrow system were used as treatments to quantify runoff water harvesting. Among the treatments, plastic mulched wide ridge (75 cm ridge /45 cm furrow) was found to be economically feasible by its higher net return and B-C ratio. Hence, plastic mulched ridge (75 cm ridge /45 cm furrow) may be recommended as in-field rainwater harvesting system for rainfed maize production.

Development stage

Vegetative stage

Flowering stage

2. Technology for Adoption

a. Ventilation rates inside the naturally ventilated polyhouse for high value crops

A regression equation was fitted to estimate the ventilation rate based on the measured wind speed in a naturally ventilated green house is as follows:

where y is ventilation rate in m^3 /sec and x is wind speed in km/hr.

Wind speed vs ventilation rate

The proposed regression model can be used to estimate the ventilation rate based on the measured wind speed. If the wind speed of the greenhouse location is known from weather station, then ventilation rate for similar greenhouse located in semi-arid region can be estimated.

b. Lysimeter based crop coefficients for Radish (*Raphanus sativus* L.) under protected cultivation

The reference evapotranspiration (ETo) in greenhouse was calculated using the Hargreaves model. Crop evapotranspiration was estimated by using electronic weighing lysimeter. Also, the crop coefficient value of radish grown under forced ventilated greenhouse were calculated.

The recommended crop coefficient values to be adopted for radish crop grown under naturally ventilated greenhouses are provided in Table below.

S.	Stages	Average ETo	Recommended	Crop coefficient
No.		(mm)	Crop coefficient	from FAO
1	Initial	44.2	0.68	0.70
2	Development	45.3	0.80	0.80
3	Mid	71.9	0.92	0.90
4	Final	47.4	0.59	0.85

Table: Average ETo and Crop coefficient

Digital lysimeter installed in the polyhouse

Raddish Crop in Lysimeter

c. Low Tunnel drip irrigation strategies on microclimate modification in horticulture crops

Low tunnels were equipped with colored covers (Red, Blue and White) to study the vegetable production, particularly for watermelons, by modifying microclimatic conditions to extend growing seasons and improve crop yield.

The result showed that red covers can be recommended for winter use to maximize warmth and light absorption, while white covers are preferable in summer to mitigate heat stress and distribute light evenly. Blue covers offer versatility for transitional seasons, balancing warmth and light penetration. These insights are vital for farmers aiming to maximize yield and extend the production season through effective microclimate management.

Low Tunnel drip irrigation for watermelon crop

3. Remarks on the on-going project

S. No	Number and Title of the Projects	Duration	Name of the PI & Co-PI	Remarks
Unive	ersity Research Projects			
1	AEC&RI/KUM/SWCE/AG. ENGG/2023/143 Performance evaluation of Phytorid wastewater treatment technology and reuse of effluent water for irrigation	April 2023 to March 2025	Dr. K. Nagarajan, Professor and Head (SWCE) Dr. R. Lalitha, Professor (SWCE) Dr. S.D. Sivakumar, Professor (agronomy) & Principal, Institute of Agriculture, Kumulur	Observations must be recorded for development of recommendations
2	AECRI/CBE/IDE/AG.ENGG/ 2023/001 Estimation of Lysimeter based crop coefficients for Radish (<i>Raphanus sativus</i> L.) under protected cultivation	Jan 2023 to Dec 2025	Dr. A. Valliammai, Professor and Head (IDE), AEC&RI, Kumulur	Project is to be continued
3	Engg/Cbe/WTC/NON/2022 /001 Prioritization of Watersheds in Noyyal river basin for implementing the soil and water conservation practices by using Remote sensing and GIS techniques	April 2022 to March 2024	Dr. A. Valliammai, Professor and Head (IDE), AEC&RI, Kumulur Dr. Balaji Kannan, Professor and Head (PS&IT), AEC&RI, Cbe	Project is to be continued
4	AEC & RI/KUM/SWC/ AGRL.ENGG/2023/140	April 2023 to March 2025	Dr. R. Lalitha Professor (SWCE), AEC&RI, Kumulur Dr. K. Nagarajan	Project is to be continued

	Estimation of ventilation rates inside the naturally ventilated polyhouse for high value crops		Professor and Head (SWCE), AEC&RI, Kumulur Dr. K. Kayalvizhi Teaching assistant (Hort), AEC&RI, Kumulur	
5	URPENGG/MDU/SWC/2022 /001 Studies on the effect of using structured water in micro irrigation	September 2022 to August 2024	Dr. M. Rajeswari, Professor and Head (SWCE), AC&RI, Madurai	The mechanism for structured water must be thoroughly studied
6	AEC&RI/KUM/SWCE /AG. ENGG/2023/001 Standardization of irrigation scheduling for Okra crop Under drip fertigation through modeling	April 2023 to March 2025	Dr. A. Mani, Asst. Professor (SWCE), AEC&RI, Kumulur	Project is to be continued
7	AEC&RI/CBE/SWC/AGRL. ENGG/ 2024/008 Comparison of Machine learning models in estimating reference evapotranspiration for the semi- arid region	January 2024 to March 2026	Dr. K. Arunadevi, Asst. Professor (SWCE), AEC&RI, Cbe Dr. C.S. Sumathi, Professor (CS), AEC&RI, Cbe	Project is to be continued
	AI	CRP/GOI pro	jects	1
8	GOI/AEC/CBE/SWC/2014/ D001 Demonstration of Latest Horticulture Technologies in Precision Farming Development Centre	2023-2025	Dr. V. Ravikumar Professor and Head (SWCE), AEC&RI, Cbe	Study must be oriented for farmers adoption
9	ICAR/AEC/CBE/SWC/2018/ R001 Farm Mechanization and Precision Farming- CBE Centre- Micro irrigation system applications with appropriate technologies for using Treated Sewage Waste Water	2023-2025	Dr. V. Ravikumar Professor and Head (SWCE), AEC&RI, Cbe	Wet land construction may be completed soon and observations are to be recorded
10	Schage Masie Malei			
	AICRP/DCM/KPT/AGR/197 1/004 Effect of mechanization on yield and economics of rainfed cotton production	2021-2024	Dr. M. Manikandan, Assistant Professor (SWC), ARS, Kovilpatti	Project is to be continued

12	AICRP/DCM/KPT/AGR/197	2020 - 2023	Dr. M. Manikandan,	Project is	to	be
	1/004		Assistant Professor	continued		
	Catchment - storage - command		(SWC), ARS,			
	area relationship for enhancing		Kovilpatti			
	water productivity in a micro -					
	watershed (Alfisols)					

4. Action Plan for the year 2024-2025

Department of Soil and Water Conservation Engineering, AEC&RI, Coimbatore

Following projects under Precision Farming Development Centre scheme funded by Government of India will be taken up.

- 1. Agricultural Extension through cellphone application
- 2. Initiating research work in Vertical farming

Following project under Micro irrigation system applications with appropriate technologies for using Treated Sewage Waste Water funded by ICAR CRP will be taken up.

1. Performance evaluation of constructed wetlands in treating grey water.

Irrigation Drainage Engineering, AEC&RI, Kumulur

1. Geo spatial studies on groundwater quality assessment for domestic and Irrigation purposes for Lalgudi Block (Village wise), Trichy district

Following uncompleted AESM – 2023 works have to be expedited in the ensuing year 2024-2025

- 1. Salinity reduction in irrigation water Project leader: Dr. M. Rajeswari, Professor (SWCE)
- 2. Field & Laboratory study of soil and nutrient erosion Project leader: Dr. K. Arunadevi, Asst. Professor (SWCE)
- 3. Soil management in Entisol Project leader: Dr. M. Nagarajan, Assistant Professor (SWCE)

PFDC, Coimbatore

- 1. A scientist from Horticulture discipline must be added as a Co-Principal Investigator in the Precision Farming Development Centre, Department of Soil and Water Conservation Engineering, AEC&RI, TNAU, Coimbatore.
- 2. A scientist from Plant Pathology and a scientist from Agriculture Entomology discipline must be added as a Co-Principal Investigator in the Precision Farming Development Centre, Department of Soil and Water Conservation Engineering, AEC&RI, TNAU, Coimbatore.

V. REMARKS

a. General recommendations

- Multi-disciplinary research involving scientists from DCM & CPBG may be taken up (Action: All scientists)
- Efforts may be taken to apply for more number patents in all the agricultural engineering disciplines (**Action:** All scientists).
- All the scientists may be encouraged to publish their research findings in the peer reviewed journals having NAAS rating more than 7 (**Action**: All Scientists).
- Efforts may be made to mobilize more externally funded schemes (**Action**: All Scientists).

b. Farm Machinery and Power Engineering

- A digital repository farm machinery specific to crops may be created and hosted in Web portal for the benefit of farmers and stakeholders (**Action**: FMPE, CBE/KUM).
- Emphasis may be given for the development of machineries for small farmers and farm women (**Action**: FMPE, CBE/KUM).
- Efforts may be taken to mass produce farm machineries at a nominal cost for the benefit of farmers (**Action**: FMPE, CBE/KUM).
- Package of machineries for mechanization in sesame may be developed and popularized (**Action**: FMPE, CBE/KUM).

c. Food Process Engineering

- Research may be intensified for decontamination of aflatoxin in spices during storage (**Action**: FPE, CBE/CPPS).
- Seeds from the turkey berry may be explored for further utilization (**Action**: FPE, CBE)
- Scaling up of turmeric slicer may be carried out (**Action**: FPE, CBE)
- Multi head 3D printer may be developed for large scale production (Action: FPE, CBE)
- Coconut grader may be commercialized (**Action**: FPE, CBE)

d. Renewable Energy Engineering

- Usage of solar gadgets for multiple agricultural operations may be explored (**Action**: REE, CBE /KUM).
- Biofuel potential of top ten high biomass yielding crops may be assessed and documented (**Action**: REE, CBE /KUM).
- Feasibility of biofuel production from high yielding aquatic plant biomass feedstocks and dry crop residues may be assessed (**Action**: REE, CBE /KUM)
- Research may be taken up on development of Fuel cell (Action: REE, CBE /KUM)

e. Soil and Water Conservation Engineering

• Data on declining ground water level in Tamil Nadu may be collected in association with CWGS, TNAU and documented (**Action:** SWCE, CBE/CWGS).

VI. LIST OF PARTICIPANTS

S. No.	Name	Designation and Department
1.	Dr. M. Raveendran	Director of Research, TNAU, Coimbatore
2.	Dr. P. Balasubramaniam	Director, NRM, TNAU, Coimbatore
3.	Dr. K. Kalarani	Director, CM, TNAU, Coimbatore
4.	Dr. P. Rajkumar	Dean (Agrl. Engg.), AEC&RI, Kumulur
5.	Dr. A. Raviraj	Dean (Agrl. Engg.), AEC&RI, Coimbatore
6.	Dr. S.D. Sivakumar	Principal, IOA, Kumulur
7.	Dr. K. Nagarajan	Prof. & Head (SWCE), AEC&RI, Kumulur
8.	Dr. A. Valliammai	Prof. & Head, FM&PE, AEC&RI, Kumulur
9.	Dr. R. Thiyagarajan	Prof. & Head, FM&PE, AEC&RI, Kumulur
10.	Dr. R. Kavitha	Prof. & Head, FM&PE, AEC&RI, Coimbatore
11.	Dr. S. Karthikeyan	Prof. & Head, CPHT, TNAU, Coimbatore
12.	Dr. A. Kamaraj	Prof. & Head, REE, AEC&RI, Coimbatore
13.	Dr. D. Ramesh	Prof. & Head, REE, AEC&RI, Coimbatore
14.	Dr. I. Sudagar	Prof. & Head, FPE, AEC&RI, Coimbatore
15.	Dr. M. Rajeswari	Prof. & Head (Agrl. Engg.), SWC, AC&RI, Madurai
16.	Dr. S. Sriramajayam	Prof. & Head (Agrl.Engg.), VOC AC&RI, Killikulam
17.	Dr. M. Balakrishnan	Prof. & Head, FPE, AEC&RI, Coimbatore
18.	Dr. P. Subramanian	Professor, REE, AEC&RI, Coimbatore
19.	Dr. Balaji Kannan	Professor, PS&IT, AEC&RI, Coimbatore
20.	Dr. A. Suredrakumar	Professor, FM&PE, AEC&RI, Coimbatore
21.	Dr. V. Palaniselvam	Professor, REE, AEC&RI, Coimbatore
22.	Dr. N. Anandaraj	Professor, SWCE, AC&RI, Chettinad
23.	Dr. S. Umesh Kanna	Professor, TPO to VC, TNAU, Coimbatore
24.	Dr. R. Mahendiran	Professor, REE, AEC&RI, Coimbatore
25.	Dr. S. Selvakumar	Professor (SWCE), CWGS, TNAU, Coimbatore
26.	Dr. R. Lalitha	Professor (SWCE), AEC&RI, Kumulur
27.	Dr. V. Thirupathi	Professor, CPHT, AEC&RI, Coimbatore
28.	Dr. C. Babu	Professor (PBG), Directorate of Research, TNAU, Cbe
29.	Dr. N. Balakrishnan	Professor (Agrl. Ento.), Directorate of Research, TNAU,
		Cbe
30.	Dr. P. Padmanathan	Assoc. Professor, FM&PE, AEC&RI, Coimbatore
31.	Dr. B. Suthakar	Assoc. Professor, FM&PE, AEC&RI, Coimbatore
32.	Dr. S.A. Ramajani	Assoc. Professor, REE, AEC&RI, Coimbatore
33.	Dr. P. Vijayakumary	Assoc. Professor, REE, AEC&RI, Coimbatore
34.	Dr. S. Parimala Devi	Assoc. Professor, REE, AEC&RI, Coimbatore
35.	Dr. Noorjahan A.K.A. Hanif	Assoc. Professor (Agrl. Extn.), BE&AS, AEC&RI, Kumulur
36.	Dr. P. Kamaraj	Assoc. Professor (FM), FM&PE, AEC&RI, Kumulur
37.	Dr. A. Ramalakshmi	Assoc. Professor (AGM), FPE, AEC&RI, Coimbatore
38.	Dr. K. Chandrakumar	Assoc. Professor (Biochem.), REE, AEC&RI, Coimbatore
39.	Dr. N. Raja	Assoc. Professor (Comp.Sci.), BE&AS, AEC&RI, Kumulur
40.	Dr. M. Nagarajan	Asst. Professor (SWCE), AEC&RI, Coimbatore

41.	Dr. A. Mani	Asst. Professor (SWCE), AEC&RI, Kumulur
42.	Dr. S. Thambidurai	Asst. Professor, FM&PE, AEC&RI, Kumulur
43.	Dr. R. Arulmari	Asst. Professor (FPE), AEC&RI, Kumulur
44.	Dr. M. Manikandan	Asst. Professor (SWC), ARS, Kovilpatti
45.	Dr. S. Parveen	Asst. Professor (FPE), AEC&RI, Coimbatore
46.	Dr. P. Sudha	Asst. Professor (EPE), AEC&RI, Coimbatore
47.	Dr. G. Amuthaselvi	Asst. Professor (FPE), AEC&RI, Coimbatore
48.	Dr. A.P. Mohankumar	Asst. Professor (FPE), AEC&RI, Coimbatore
49.	Dr. K. Arunadevi	Asst. Professor (SWCE), AEC&RI, Coimbatore
50.	Dr. P. Dhanachezhiyan	Asst. Professor (FM), FM&PE, AEC&RI, Coimbatore
